Machine-Free Complexity

Implicit Complexity

Ugo Dal Lago

Caleidoscope Summer School, Paris, June 17-21, 2019

About This Course

1. Introduction to Implicit Computational Complexity.
» Approximately one hour.

http://www.cs.unibo.it/~dallago/CSCICC/
ugo.dallago@unibo.it

About This Course

1. Introduction to Implicit Computational Complexity.
» Approximately one hour.

2. Implicit Complexity through the Curry-Howard
Correspondence.

» Approximately one hour.

http://www.cs.unibo.it/~dallago/CSCICC/
ugo.dallago@unibo.it

About This Course

1. Introduction to Implicit Computational Complexity.
» Approximately one hour.

2. Implicit Complexity through the Curry-Howard
Correspondence.

» Approximately one hour.

3. Boosting the Intensional Expressive Power of ICC
Systems.
» Approximately half an hour.

http://www.cs.unibo.it/~dallago/CSCICC/
ugo.dallago@unibo.it

About This Course

1. Introduction to Implicit Computational Complexity.
» Approximately one hour.

2. Implicit Complexity through the Curry-Howard
Correspondence.

» Approximately one hour.
3. Boosting the Intensional Expressive Power of ICC
Systems.
» Approximately half an hour.

4. Challenges and Pespectives: Probabilistic and
Concurrent Computation.

» Approximately half an hor.

http://www.cs.unibo.it/~dallago/CSCICC/
ugo.dallago@unibo.it

About This Course

1. Introduction to Implicit Computational Complexity.
» Approximately one hour.

2. Implicit Complexity through the Curry-Howard
Correspondence.

» Approximately one hour.
3. Boosting the Intensional Expressive Power of ICC
Systems.
» Approximately half an hour.

4. Challenges and Pespectives: Probabilistic and
Concurrent Computation.

» Approximately half an hor.

» Website: http://www.cs.unibo.it/“dallago/CSCICC/
» Email: ugo.dallago@unibo.it

» Please contact me if you have any questions about the
topics of this course.

http://www.cs.unibo.it/~dallago/CSCICC/
ugo.dallago@unibo.it

Part I

A Short Introduction to Implicit
Computational Complexity

Implicit Computational Complexity

» Goal

» Machine-free characterizations of complexity classes.
» No explicit reference to resource bounds.
» P, PSPACE, L, NC,...

Implicit Computational Complexity

» Goal

» Machine-free characterizations of complexity classes.
» No explicit reference to resource bounds.
» P, PSPACE, L, NC,...
» Why?
» Simple and elegant presentations of complexity classes.
» Formal methods for complexity analysis of programs.

Implicit Computational Complexity

» Goal

» Machine-free characterizations of complexity classes.
» No explicit reference to resource bounds.
» P, PSPACE, L, NC,...
» Why?
» Simple and elegant presentations of complexity classes.
» Formal methods for complexity analysis of programs.
» How?
» Recursion Theory [BC92|, [Leivant94], . ..
» Type Systems and A-calculi [Hofmann97|, ...
» Proof Theory, via Cut-Elimination [Girard95], ...
»

Complexity Classes

» Algorithms consume resources (time, space,
communication, energy).

v

How could one formalize the concept of being efficient with
respect to a given resource?

v

A Measure
» One can assign to any algorithm P an upper bound on the
amount of resources (of a certain kind) P needs when
executed.
» This can be either precise or asymptotic.
» The more precise, the more machine-dependent.
A Predicate
» The amount of resources P needs when executed is bounded
by a function in a “robust” class. Examples:
» Polynomial Functions.
» Logarithmic Functions.
» Elementary Functions.

v

v

Complexity Class: the set of those functions computed
by algorithms satisfying the predicate.

Characterizing Complexity Classes

Programs Functions
) (¢

Characterizing Complexity Classes

Programs Functions

C

» These are not (necessarily)
machines.

» There is no natural notion
of of cost model.

» Writing algorithms is
easier. \)

Characterizing Complexity Classes

Programs

L

[]

Functions

C

Characterizing Complexity Classes

Programs Functions
) (o
P

Characterizing Complexity Classes

Programs Functions
) (o
P

Proving [S] =P

> P C[S]
» For every function f which can be computed within the
bounds prescribed by P, there is P € S such that [P] = f.

Proving [S] =P

> P CS]
» For every function f which can be computed within the
bounds prescribed by P, there is P € S such that [P] = f.
> [STcP
» Semantically
» For every P € S, [P] € P is proved by showing that some
algorithms computing [P] exists which works within the
prescribed resource bounds.
» P € L does not necessarily exhibit itself a nice
computational behavior.
» Operationally
> Sometimes, £ can be endowed with an effective operational
semantics.
» Let Lp C L be the set of those programs which work
within the bounds prescribed by C.
> [S] € P can be shown by proving S C Lp.

If Soundness is Proved Operationally...

If Soundness is Proved Operationally...

ICC Systems as Static Analyzers

Yes, P € Lp

Don’t know

ICC Systems as Static Analyzers

Yes, P € Lp
+ bounds

Don’t know

Function Algebras

» Computation can be formalized by way of machines, like
Turing machines, RAM, counter machines, etc.
» Defining the amount of resources the machine consumes is
easy.
» Writing algorithms as machines is difficult.
» Every such class of machines implicitly defines a class of
functions.

Function Algebras

» Computation can be formalized by way of machines, like
Turing machines, RAM, counter machines, etc.
» Defining the amount of resources the machine consumes is
easy.
» Writing algorithms as machines is difficult.
» Every such class of machines implicitly defines a class of
functions.
» Another, different, way to capture computation is as
follows:
» Start from a set of basic functions. . .
» ...and close it under some operators.

Function Algebras

» Computation can be formalized by way of machines, like
Turing machines, RAM, counter machines, etc.
» Defining the amount of resources the machine consumes is
easy.
» Writing algorithms as machines is difficult.
» Every such class of machines implicitly defines a class of
functions.
» Another, different, way to capture computation is as
follows:
» Start from a set of basic functions. . .
» ...and close it under some operators.

» The set of recursive functions is the smallest set of
functions which contains the basic functions and which is
closed with respect to the operators.

Function Algebras

>

Computation can be formalized by way of machines, like
Turing machines, RAM, counter machines, etc.
» Defining the amount of resources the machine consumes is
easy.
» Writing algorithms as machines is difficult.
» Every such class of machines implicitly defines a class of
functions.
Another, different, way to capture computation is as
follows:
» Start from a set of basic functions. . .
» ...and close it under some operators.
The set of recursive functions is the smallest set of
functions which contains the basic functions and which is
closed with respect to the operators.
Where is the machine? Where are the programs?
» They are the proofs of recursivity, which are finitary.
» As such, they support an induction principle.

Kleene’s Function Algebra — Basic Functions

» Zero. The function z : N — N defined as follows: z(n) =0
for every n € N.

» Successor. The function s : N — N defined as follows:
s(n) =n+1 for every n € N.

» Projections. For every positive n € N and for whenever
1 <m < n, the function II7, : N — N is defined as follows:
I (kvy ooy kn) = k.

Kleeene’s Function Algebra — Operations (I)

» Composition. Suppose that n € N is positive, that
f:N" - N and that g,, : N* = N for every 1 < m < n.
Then the composition of f and g1, ..., g, is the function
h:NF — N defined as k(i) = f(g1(), ..., gn(7)).

» Primitive Recursion. Suppose that n € N is positive,
that f : N” — N and that g : N**2 — N. Then the function
h: N1 — N defined as follows

h(0,m) = f(m);
h(k + 1,11) = g(k, m, h(k, m));

is said to be defined by primitive recursion from f and g.

Kleene’s Function Algebra — Operations (II)

» Minimization. Suppose that n € N is positive and that
f: N1 ~ N. Then the function g : N* — N defined as
follows:

2
5.

k if £(0,4),..., f(k,7) are all defined
g(i) = and f(k,) is the only one in the list being 0.
1 otherwise

is said to be defined by minimization from f.

Functional Programs — Preliminaries

» Signature. It is a pair S = (X, o) where:
» 3 is an alphabet;
» «: X — N assigns to any symbol ¢ in ¥ a natural number
a(c), called its arity.

Functional Programs — Preliminaries

» Signature. It is a pair S = (X, o) where:
» 3 is an alphabet;
» «a: X — N assigns to any symbol ¢ in ¥ a natural number
a(c), called its arity.
» Examples.
» The signature Sy defined as ({0, s}, ay) where an(0) =0
and ay(s) = 1.
» The signature S defined as ({0, 1, e}, ap) where
ap(0) = ap(1) = 1 and ag(e) = 0.
» Given two signatures S and T such that the underlying set
of symbols are disjoint, one can naturally form the sum

S+T.

Functional Programs

» Closed Terms. Given a signature S = (X, «), they are the
smallest set of expressions C(S) satisfying the following
closure property: if f € ¥ and #1,...,t4 € C(S), then
£, ..) € C(S).

» Examples.

C(Sy) = {0,s(0),s(s(0)),...};

)
C(Sg) = {e,0(e), 1(e),0(0(e)),. ..}

» Open Terms. Given a set of variables £ distinct from X3,
the set of open terms O(S, L) is defined as the smallest set
of words including £ and satisfying the closure condition
above.

Functional Programs

» Functional Programs on § = (X,«) and 7 = (T, 5):

P:=R|R,P

Ru=1—1t

Lo=fi b, ot | Rl L pe)
where:

» X ={f;...,f,} and that T is disjoint from X.
» the metavariables p¥ range over O(T, L),
» t ranges over O(S+ T, L).

Functional Programs

» Example:

add(0,z) — =
add(s(z),y) — s(add(z,y)).

» The evaluation of add(s(s(0)),s(s(s(0)))) goes as follows:

Functional Programs
» Example:
append(e,z) — =

append(0(x),y) — O(append(z, y))
append(1(x),y) — 1(append(z,y)).

» Example:

reverse(e) — e
reverse(0(z) — 1(reverse(z))

reverse(1(z) — O(reverse(z)).
» Example:

replicate(e,z) — e
replicate(0(x),y) — append(replicate(z,y),y)
replicate(1(x),y) — append(replicate(z,y),y).

A-Calculus

» Terms:
M=z | .M | MM,

» The term obtained by substituting a term M for a variable
x into another term N is denoted as N{M/z}.
> Values:
Vi=ux| A e.M.
» Reduction:

M —, N M —, N
Ae. M)V —, M{V/z} ML —, NL LM —, LN

Here M ranges over terms, while V ranges over values.

» Normal Forms. Any term M such that there is not any
N with M —, N. A term M has a normal form iff
M —7 N. Otherwise, we write M 1.

A-Calculus

» Terms:

M=z | .M | MM,

» The term obtained by substituting a term M for a variable
x into another term N is denoted as N{M/z}.

» Values:

Vi=ux| A e.M.

> Reducti7(n:

M —, N M —, N

» This is just one way of evaluating
terms, the so called weak
call-by-value evaluation.

» An alternative would be
call-by-name, which however
tends to be inefficient in many
cases.

(L —, NL LM —, LN

ile V' ranges over values.

[such that there is not any
as a normal form iff

M 1.

A-Calculus — Computing on N

» Scott’s Numerals.

07 = Az \y.x;
n+1"= Az \y.y " n.
» Representing Functions. A \-term M represents a

function f: N — N iff for every n, if f(n) is defined and
equals m, then M™n —» "m™ and otherwise M"n" 1

Computability

» For the three introduced computational models, one can
define the class of functions from N to N they compute.

» Unsurprisingly, they are all the same: the three models are
all Turing-powerful.

» This means, in particular, that programs in the three
formalisms can be, in general, very inefficient.

» They can compute whatever (computable) function one can
imagine, after all!

Computability

» For the three introduced computational models, one can
define the class of functions from N to N they compute.

» Unsurprisingly, they are all the same: the three models are
all Turing-powerful.

» This means, in particular, that programs in the three
formalisms can be, in general, very inefficient.

» They can compute whatever (computable) function one can
imagine, after all!

» [s there a way to isolate the efficient recursive functions,

functional programs, and A-terms?

» First of all, we need to understand what it means for such
things to be efficient.

Cost Models

» Let us focus our attention to time complexity.

» How do we measure the amount of time a computation
takes in the three models we described?

» Functional Programs: number of reduction steps?

Cost Models

» Let us focus our attention to time complexity.

» How do we measure the amount of time a computation
takes in the three models we described?

» Functional Programs: number of reduction steps?
» A-Calculus: number of reduction steps?

Cost Models

» Let us focus our attention to time complexity.
» How do we measure the amount of time a computation
takes in the three models we described?

» Functional Programs: number of reduction steps?
» A-Calculus: number of reduction steps?
» Function Algebra: ?

Cost Models

» Let us focus our attention to time complexity.
» How do we measure the amount of time a computation
takes in the three models we described?
» Functional Programs: number of reduction steps?
» A-Calculus: number of reduction steps?
» Function Algebra: ?
» Invariance Thesis [SVEB1980|: a cost model is reasonable
iff the class of polytime computable functions is the same as
the one defined with Turing programs.

Cost Models

» Let us focus our attention to time complexity.
» How do we measure the amount of time a computation
takes in the three models we described?
» Functional Programs: number of reduction steps?
» A-Calculus: number of reduction steps?
» Function Algebra: ?
» Invariance Thesis [SVEB1980|: a cost model is reasonable
iff the class of polytime computable functions is the same as
the one defined with Turing programs.

» The most interesting cost models are, clearly, the unitary
ones. They are not always invariant by definition, however.

Complexity Classes as Function Algebras?

» Recursion on Notation: since computation in unary
notation is inefficient, we need to switch to binary notation.

Complexity Classes as Function Algebras?

» Recursion on Notation: since computation in unary
notation is inefficient, we need to switch to binary notation.

» What Should we Keep in the Algebra?

Basic functions are innoquous.

Polytime functions are closed by composition.
Minimization introduces partiality, and is not needed.
Primitive Recursion?

vV vy vVvYy

Complexity Classes as Function Algebras?

» Recursion on Notation: since computation in unary
notation is inefficient, we need to switch to binary notation.

» What Should we Keep in the Algebra?

Basic functions are innoquous.

Polytime functions are closed by composition.

Minimization introduces partiality, and is not needed.

Primitive Recursion?

vV vy vVvYy

» Clertain uses of primitive recursion are dangerous, but if we
do not have any form of recursion, we capture much less
than polytime functions.

Safe Recursion [BellantoniCook93|

» Safe Functions: pairs in the form (f,n), where
f:B" > Band 0 <n<m.

» The number n identifies the number of normal arguments
between those of f: they are the first n, while the other
m — n are the safe arguments.

» Following [BellantoniCook93|, we use semicolons to
separate normal and safe arguments: if (f,n) is a safe
function, we write f (W V) to emphasize that the n words
in W are the normal arguments, while the ones in V are
the safe arguments.

Basic Safe Functions

» The safe function (e,0) where e : B — B always returns the
empty string €.

» The safe function (ag,0) where ag : B — B is defined as
follows: ag(W) =0 -W.

» The safe function (a;,0) where a; : B — B is defined as
follows: a1(W) =1-W.

» The safe function (¢,0) where ¢ : B — B is defined as
follows: t(e) =€, t(OW) =W and t(1W) = W.

» The safe function (c,0) where ¢ : B* — B is defined as
follows: ¢(e, W,V Y) =W, ¢(0X,W,V,Y) =V and
c(1X, W, V)Y) =

» For every positive n € N and for whenever 1 < m, k < n,
the safe function (II7, k), where II7 is defined in a natural
way.

Safe Composition

(f:B" — B,m)
(g, B — B, k) for every 1 < j <m

(h; : B — B, k) for every m +1<j <n

Safe Composition

(f:B" — B,m)
(gj:Bk—HB%,k) forevery 1 <7 <m

(h; : B — B, k) for every m +1<j <n

4

(p: B¥"" — B, k) defined as follows:

(Simultaneous) Safe Recursion

(ff:B" — B,m) for every 1 <i < j
(gh :B"HT2 5 B om + 1) for every 1 <i < j, k€ {0,1}

(Simultaneous) Safe Recursion

(f:B" — B,m) for every 1 <i < j

(gh :B"HT2 5 B om + 1) for every 1 <i < j, k€ {0,1}

4

(" : B" ™! — B,m + 1) defined as follows:

W0, W; V) = f{(W;V);
RHOX, W3 V) = gb(X, WV, h" (X, W;V),... . h (X
WX, W; V) = gi(X,W; V, B (X, W; V), ..., Wi (X

Classes of Functions

» BCS is the smallest class of safe functions which includes
the basic safe functions above and which is closed by safe
composition and safe recursion.

» BC is the set of those functions f : B — B such that
(f,n) € BCS for some n € {0,1}.

Lemma (Max-Poly Lemma)

For every (f : B™ — B, m) in BCS, there is a monotonically
increasing polynomial py : N — N such that:

If(Vi,.. ., V)| < py Z Vil | + max |V

m+1<k<n
1<k<m

Lemma (Max-Poly Lemma)

For every (f : B™ — B, m) in BCS, there is a monotonically
increasing polynomial py : N — N such that:

|f(Vi,..., V)| < py Z Vil | + max |V

m+1<k<n
1<k<m

Proof.

» An induction on the structure of the proof a function being
in BCS.

» The restriction to safe recursion is essential.

Theorem (Polytime Soundness)
BC g FP{071}.

Proof.

» This is an induction on the structure of the proof of a
function being in BCS.

» The proof becomes much easier if we first prove that
simultaneous primitive recursion can be encoded into
ordinary primitive recursion.

» We make essential use of the Max-Poly Lemma.

Lemma (Polynomials)

For every polynomial p : N — N with natural coefficients there is
a safe function (f,1) where f:B — B such that
|fW)| = p(IW]) for every W € B.

Lemma (Polynomials)

For every polynomial p : N — N with natural coefficients there is
a safe function (f,1) where f:B — B such that
|fW)| = p(IW]) for every W € B.

Theorem (Polytime Completeness)
FP{O,I} g BC

Lemma (Polynomials)

For every polynomial p : N — N with natural coefficients there is
a safe function (f,1) where f:B — B such that
|fW)| = p(IW]) for every W € B.

Theorem (Polytime Completeness)
FP{O,I} g BC

Theorem (BellantoniCook1992)
FPo,1y = BC.

Further Work

Math. Log. Quart. 54, No. 3, 323 -329 (2008) / DOI 10.1002/malq.200610056

Characterizing PSPACE with pointers

Isabel Oitavem*
Departamento Matemdtica da FCT-UNL and CMAF-UL

Received 6 September 2006, revised 3 November 2007, accepted 5 November 2007
Published online 8 May 2008

Key words C ional complexity, implicit ization, PSPACE.
MSC (2000) 03D20, 03D15, sxms. 03D70
‘This paper gives an impli ion of the class of functi table in polynomial space by deter-

—PSPACE. It gives an inductive characterization of PSPACE with no ad-hoc initial

scheme is the main difference between this characterization of PSPACE and the well-known Bellantoni-Cook
characterization of the polytime functions — PTIME.

© 2008 WILEY-VCH Verlg GribH & Co. KGaA, Weiahein

1

PSPACE

Further Work

A Characterization of NC by Tree Recurrence

Daniel Leivant

Computer Seience Department, Indiana University
leivantfce.indiana.edu

Abstrac

We show that a boolean valued function is in
NC iff it is defined by ramified schematic recurrence
aver trees. This machine-independent. characteriza-
tion uses no initial fanctions other than bsic tree
aperations, and no bounding conditions on the recur-
rence,

Aside from its tedhnical interest. our result evi-
denees the foundational nature of NC. thereby
trating the merits of implicit (ie. machine indepen-
dent) computational complexity theary

-

1 Introduction

1.1 Implicit computational complexity

A mumber of machine-independent spproaches
to computstional complexity have been devel
oped, which diaracterize resource-bounded comple
ity classes by conceptual measures borrowed prinac-
ily from mathematical logic, These include deserip-
tive complesity (fnite model theory). bounded arith-
met tence prineiples. intrinsic thearies, and
algebras of functions, Collectively these approaches

set-exi

their uature, relate them to issues relesant to pro-
gramming and to verification, and suggest new tools
for separating them. Practically, implicit computa-
tional complexity provides s framework for stream-
lined incorporation of computational complexity into
arens such as formal methods in software develoy
ment. programming language theory, and database
theory

1.2 Ramified recurrence and computation
complexity

Several natural clases of computsble numeric
functions can be defined or characterized by va
ants of recurrence (e, primitive recursion].! Ritchie
and Cobham [24. 7] gave the first characterizations
by recurrence of computational complexity classes of
interest i computer sc
been shown that recurrence ean reflect different uses
of data in computing, leading to s better understand-
ing of the relation bet ween applicative programs and
computational complexity. This was pointed out in-
dependently for recurrence (3], functional recurrence
[25]. lambda representability [12], and second order

ence. Mare recently it has

NC

Further Work

A Functional Language for Logarithmic Space

Peter Moller Neergaard*

Mitchom School of Computer Science,
Brandeis University,
Waltham, MA 02454, USA
turtlefachilles.linearity.org

Abstract. More than being just a tool for expressing algorithms, a well-
designed programming language allows the user to express her ideas effi-
ciently. The design choices however effect the efficiency of the algorithms
written in the languages. It is therefore important to understand how
such choices effect the ibility of i

The paper pursues the very low complexity programs by presenting a
first-order function algebra BC; that captures exactly LF, the functions
computable in logarithmic space. This gives insights into the expressive-
ness of recursion.

The important technical features of BC; are (1) a separation of vari-
ables into safe and normal variables where recursion can only be done
over the latter; (2) linearity of the recursive call; and (3) recursion with
a variable step length (course-of-value recursion). Unlike formulations of
LF via Turing machines, BC; makes no references to outside resource
measures, e.g., the size of the memory used. This appears to be the first
such characterization of LF-computable functions (not just predicates).

The proof that all BC;-programs can be evaluated in LF is of separate
interest to programmers: it trades space for time and evaluates recursion
with at most one recursive call without a call stack.

LOGSPACE

Which Cost Model?

» Is it sensible to take the number of reduction steps as a
measure of the execution time of a functional program P?

Which Cost Model?

» Is it sensible to take the number of reduction steps as a
measure of the execution time of a functional program P?
» Apparently, the answer is negative.
» Consider

f(0) — nil

f(s(z)) — g(f(2))
g(z) — bin(z,).

Which Cost Model?

» Is it sensible to take the number of reduction steps as a
measure of the execution time of a functional program P?
» Apparently, the answer is negative.
» Consider

f(0) — nil

f(s(z)) — g(f(2))
g(z) — bin(z,).

» We need to exploit sharing!
» Can we perform rewriting on shared representations of

terms?
» Does all this introduce an unacceptable overhead?

Which Cost Model?

» Is it sensible to take the number of reduction steps as a
measure of the execution time of a functional program P?
» Apparently, the answer is negative.
» Consider

f(0) — nil

f(s(z)) — g(f(2))
g(z) — bin(z,).

» We need to exploit sharing!
» Can we perform rewriting on shared representations of

terms?
» Does all this introduce an unacceptable overhead?

Theorem (DLMartini2009)

The unitary cost model is invariant, both in functional program
and in the \-calculus.

The Interpretation Method

» Domain: a well-founded partial order (D, <).

» Assignment A for a signature S = (3, «): to every symbol
f in X, one puts in correspondence a function

[flq: D0 =D

which is strictly increasing in any of its argument w.r.t. <.

» Given an assignment A, one can generalize it to a map on
closed and open terms.

» Interpretation for a functional program P: an assignment
such that for every rule [— t, it holds that

[[Ja > [t]a

Theorem (Lankford1979)

A functional program P is terminating iff there is one
interpretation for it.

Polynomial Interpretations

» What if we choose N as the underlying domain, and
polynomials on the natural numbers as the functions
intepreting them?

Polynomial Interpretations

» What if we choose N as the underlying domain, and
polynomials on the natural numbers as the functions
intepreting them?

» Do we get a characterization of polynomial time
computable functions?

Polynomial Interpretations

» What if we choose N as the underlying domain, and
polynomials on the natural numbers as the functions
intepreting them?

» Do we get a characterization of polynomial time
computable functions?

» Not really!

» Suppose that fis a unary function symbol, and that ¢ is a
closed term in, say, C(Sg).

Polynomial Interpretations

» What if we choose N as the underlying domain, and
polynomials on the natural numbers as the functions
intepreting them?

» Do we get a characterization of polynomial time
computable functions?

» Not really!

» Suppose that fis a unary function symbol, and that ¢ is a

closed term in, say, C(Sg).
» If f(t) =" s, then n < [£(¢)] 4 = [f]a([t] 4)

Polynomial Interpretations

» What if we choose N as the underlying domain, and
polynomials on the natural numbers as the functions
intepreting them?

» Do we get a characterization of polynomial time
computable functions?

» Not really!

» Suppose that fis a unary function symbol, and that ¢ is a
closed term in, say, C(Sg).

» If f(t) =" s, then n < [f(¢)]4 = [f]a([t]4)

» But [t]4 can be much bigger than |¢|.

Polynomial Interpretations

» What if we choose N as the underlying domain, and
polynomials on the natural numbers as the functions
intepreting them?

» Do we get a characterization of polynomial time
computable functions?

» Not really!

» Suppose that fis a unary function symbol, and that ¢ is a
closed term in, say, C(Sg).

» If f(t) =" s, then n < [f(¢)]4 = [f]a([t]4)

» But [t]4 can be much bigger than |¢|.

» Everything depends on the way you interpret data!

Polynomial Interpretations

» What if we choose N as the underlying domain, and
polynomials on the natural numbers as the functions
intepreting them?

» Do we get a characterization of polynomial time
computable functions?

» Not really!

» Suppose that fis a unary function symbol, and that ¢ is a
closed term in, say, C(Sg).

If £(¢t) =™ s, then n < [f(¢)]4 = [fl4([t]4)

But [t] 4 can be much bigger than |¢|.

Everything depends on the way you interpret data!

You need to restrict to polynomial interpretations in which

data are interpreted additively, e.g.

[e]=0; [0J(x)=x+1; [i(z)=z+1

vV vy VvVYyy

Theorem (BCMT2001)

Additive polynomial intepretations characterize polynomial time
computable functions.

Other Techniques

» Path Orders
» Originally introduced for termination.

» PPO, MPO, LPO,
» Later refined to guarantee polytime complexity.

» LMPO [Marion2003].
> POP* [AM2008].
» Quasi-Interpretations
» Obtained by combining interpretations and path orders
[BMM2011].
» The value of the lhs can be equal to the rhs.

» Intensionally very powerful.
» Various classes can be characterized (in particular, FP and

FPSPACE).
» Not sound for the unitary cost model.

Part 11

Implicit Complexity and the
Curry-Howard Correspondence

Definition

» A direct relationship between:

» Programs, seen as computational objects.
» Proofs, seen as logical objects.

» This extends to various key concepts in logic and

programming:
Logic Programming
Formulas Types
Implication Function Type
Introduction Rule Constructor
Elimination Rule Destructor

Normalization Computation

Examples — Hilbert-Style Proofs
» Combinatory Logic
M:=z|S|K|MM
» Typed CL vs. Hilbert-style Proofs

acl z:ael
I'Fao I'Fz:a«
'Fa— (- a) 'FK:a— (8 —a)
(= (B—=17)— C(la=(B—=9)—
M aspo@syn T @asps@on
'Fa—p 'rM:a— 0
'k« I'EN:«

TFp T+ MN: B

Examples — Natural Deduction

» A-Calculus
M:=z|Xe.M| MM

» Typed M-Calculus vs. Natural Deduction

ael r:ael
I'Fa I'Fz:a
IakFpg Fx:aFM:p
I'ra—p I'tXeM:a—pj
'ra—p '-M:a—p
I'a I'-N:«

T+ A T MN:B

Examples — Extensions

» Intuitionistic Second-Order Logic

» One can endow the underlying logic with conjunctions,
disjunctions, and second order quantification.

» On the side of programs, one could proceed by adding pairs,
projections, etc.

» This way, the correspondence continues to hold.

» The obtained language, called F, enjoys strong
normalization.

Examples — Extensions

» Intuitionistic Second-Order Logic
» One can endow the underlying logic with conjunctions,
disjunctions, and second order quantification.
» On the side of programs, one could proceed by adding pairs,
projections, etc.
» This way, the correspondence continues to hold.
» The obtained language, called F, enjoys strong
normalization.
» Heyting Arithmetic
» One can endow (intuitionistic) first-order logic with the
Peano’s axioms for the natural numbers, and an induction
principle.
» The obtained formal system can be, following Gddel, be
realized by terms in an extension of the simply-typed
A-calculus:

I'HZ: nat I'ES: nat — nat

I'FR:nat — (nat > a— a) > «a

» Again the obtained language, called T, enjoys strong
normalization.

Complexity?

» Simply-Typed A-Calculus
» Data are represented via their Church-encoding, e.g.
nat, = (@ = a) > a = «
M1 —
n'=ArAYy. ...z Y
n times
» On the one hand, normalization is known to have at least
elementary complexity [Statman1977,FLOD1983|
» On the other hand, equality cannot be
represented [Statman1982]

» System F
» We can go polymorphic:

nat = Vo.(a = a) > a = «

» The representable functions are the ones which are provably
total in second-order arithmetic.
» System T
» The fact the language realizes HA implies that the
representable functions are the provably total functions of
PA.

Further Readings

[

SURVEY

Further Readings

B8 stupies N LOGIC
LSRR AND

THE FOUNDATIONS OF MATHEMATICS

VOLUME 149

Lectures on the
Curry-Howard
Isomorphism

M H. SORENSEN and P. URZYCZYN

S —

ELSEVIER

REFERENCE

A-Calculus and Complexity

» Type Systems induced by “mainstream” logics are simply
too powerful to be easily turned into ICC systems.

» How should we proceed to, e.g. isolate a class of A-terms
computing polytime functions?

A-Calculus and Complexity

» Type Systems induced by “mainstream” logics are simply
too powerful to be easily turned into ICC systems.

» How should we proceed to, e.g. isolate a class of A-terms
computing polytime functions?

» Type Systems [Hofmann1997, BNS2000, Hofmann1999|.

» Start from something similar to T.
» Then, impose some constraints on recursion, akin to those
from [BellantoniCook1993].

A-Calculus and Complexity

» Type Systems induced by “mainstream” logics are simply
too powerful to be easily turned into ICC systems.

» How should we proceed to, e.g. isolate a class of A-terms
computing polytime functions?

» Type Systems [Hofmann1997, BNS2000, Hofmann1999|.

» Start from something similar to T.
» Then, impose some constraints on recursion, akin to those
from [BellantoniCook1993].
» Linearity Constraints [Girard1997, Lafont2004].
» Key observation: copying is the operation making
evaluation of A\-expressions problematic from a complexity

point of view.
» Let us define some constraints on duplication, then!

Safe Recursion and Type Systems

» Could we easily turn safe recursion into a type system
guaranteeing polynomial time computability in, e.g.,
System T?

» Naive Idea: use two function spaces.

» The space A — B of safe functions
» The space BA — B of normal functions.

And apply the same restrictions as in safe recursion, getting
SR

Safe Recursion and Type Systems

» Could we easily turn safe recursion into a type system
guaranteeing polynomial time computability in, e.g.,
System T?

» Naive Idea: use two function spaces.

» The space (A — B of safe functions

» Thes » Typing rules are those of T.
And appl

SR

» Iteration can be typed as follows

Mnot —» (OA - A) - 0OA— A

g

Safe Recursion and Type Systems

» Could we easily turn safe recursion into a type system
guaranteeing polynomial time computability in, e.g.,
System T?

» Naive Idea: use two function spaces.

» The space A — B of safe functions
» The space BA — B of normal functions.

And apply the same restrictions as in safe recursion, getting
SR
» Unfortunately, this does not work!
HOezp(0) = Az.S z;
HOezp(n + 1) = Ax.HOezp(n)(HOezp(n)(x)).

Safe Recursion and Type Systems

» Could we easily turn safe recursion into a type system
guaranteeing polynomial time computability in, e.g.,
System T?

» Naive Idea: use two function spaces.

» The space A — B of safe functions
» The space BA — B of normal functions.

And apply the same restrictions as in safe recursion, getting
SR
» Unfortunately, this does not work!
HOezp(0) = Az.S z;
HOezp(n + 1) = Ax.HOezp(n)(HOezp(n)(x)).

» Key Insight: higher-order variables, essentially, should be
very hard to copy.
» Well, at least those involved in recursive definitions.

Theorem
SLR precisely captures FP.

Safe Recursion and Type Systems

» Could we easily turn safe recursion into a type system
guaranteeing polynomial time computability in, e.g.,
System T?

» Naive Idea: use two function spaces.

» The space A — B of safe functions
» The space BA — B of normal functions.

And apply the same restrictions as in safe recursion, getting

» The type of iteration becomes
BMnat - (0A —-A) -0OA— A

where A — B is the type of affine HOezp(n)(z)).

functions from A to B. essentially, should be
TO COpY-.

> , at least those involved in recursive definitions.

Theoyém
SLR precisely captures FP.

A Mixed Modal/Linear Lambda Calculus with
Applications to Bellantoni-Cook Safe Recursion

Martin Hofmann

TU Darmstadt, FB 4, SchloBgartenstr. 7, 64289 Darmstadt, Germany
phémathematik.tu-darmstadt.de

Abstract. This paper introduces a simply-typed lambda calculus with
both modal and linear function types. Through the use of subtyping
extra term formers associated with modality and linearity are avoided.
We study the basic metatheory of this system including existence and
inference of principal types.

The system serves as a platform for certain higher-order generalisations
of Bellantoni-Cook’s function algebra capturing polynomial time using a

AF 4hn Cooe s T

AL

SLR

Capturing More Algorithms

» Safe recursion is sound and complete for polynomially
computable functions.

Capturing More Algorithms

» Safe recursion is sound and complete for polynomially
computable functions.

» Completeness, however, only holds in a purely extensional
sense.

» Not all polynomial time algorithms can be captured.

Capturing More Algorithms

» Safe recursion is sound and complete for polynomially
computable functions.

» Completeness, however, only holds in a purely extensional
sense.

» Not all polynomial time algorithms can be captured.

» (Linear) safe recursion, as an example, rules out all nested
recursive definitions, and then many useful programs

» Example: InsertionSort.

Capturing More Algorithms

» Safe recursion is sound and complete for polynomially
computable functions.
» Completeness, however, only holds in a purely extensional
sense.
» Not all polynomial time algorithms can be captured.
» (Linear) safe recursion, as an example, rules out all nested
recursive definitions, and then many useful programs
» Example: InsertionSort.
» Key Insight: one should also enforce functions to be
non-size increasing:

FM:OA—-A FN:A
Frec(M,N): BNAT — A b succ : ONAT — NAT

Capturing More Algorithms

» Safe recursion is sound and complete for polynomially
computable functions.
» Completeness, however, only holds in a purely extensional
sense.
» Not all polynomial time algorithms can be captured.
» (Linear) safe recursion, as an example, rules out all nested
recursive definitions, and then many useful programs
» Example: InsertionSort.
» Key Insight: one should also enforce functions to be
non-size increasing:

FM:OA—-A FN:A
Frec(M,N): BNAT — A b succ : ONAT — NAT

FM:0o—oA—oA FN:A
Frec(M,N): NAT — A F succ: 0 — NAT — NAT

Capturing More Algorithms

» Safe recursion is sound and complete for polynomially
computable functions.
» Completeness, however, only holds in a purely extensional
sense.
» Not all polynomial time algorithms can be captured.
» (Linear) safe recursion, as an example, rules out all nested
recursive definitions, and then many useful programs
» Example: InsertionSort.
» Key Insight: one should also enforce functions to be
non-size increasing:

FM:OA—-A FN:A
Frec(M,N): BNAT — A b succ : ONAT — NAT

FM:0o—oA—oA FN:A
Frec(M,N): NAT — A F succ: 0 — NAT — NAT

Theorem
The obtained system, called LFPL, is sound and complete for P. J

Linear types and non-size-increasing polynomial time computation

Martin Hofmann*

We propose a linear type system with recursion op-
crators for inductive datatypes which ensurcs that ail definable
functions are polynomial time computable. The system improves
upon previ in that i bear-
bitrarily nested, in particular no predicativity or modality resiric-
tions are made.

1 Summary

Recent work has shown that predicative recursion com-
bined with a linear typing discipline gives rise to type sys-
tems which guarantee polynomial runtime of well-typed
programs while allowing for higher-typed primitive recur-
sion on inductive datatypes.

Although these systeins allow one to express all polyno-
mial time functions they reject many natural formulations of
obviously polynomial time algorithms. "The reason is that
under the predicativity regime a recursively defined func-

defines a function f : N—sN of quadratic growth:

[{0) =1
F(2) = So(So(F([E])). when z >

More precisely, f(z) = [2]® where [z] = 2. As usual,
2| = [logy(z + 1)] denotes the length of z in binary nota-
tion. We also write ||| for |a| when a = |z|. Iterating J as
in

9(0)
9(2)

= f(g([3])). whenz > 0

Ieads to exponential growth, indeed. g() = 201

This example is the motivation behind predicative ver-
sions of recursion as used in [2, S]. In these systems it is
forbidden 10 iterate a function which has itself been recurs-
ively defined. More precisely, the step function in a recurs-
ive definition is not allowed to recurse on the result of a
previous function call (here g(| 5])). but may, however, re-
curse on other parameter

16 hinhar edor

than

LFPL

The strength of non-size increasing computation

Martin Hofmann
LM

Institut fiir Informatik
Minchen

Oettingenstraie 67
80538 Miinchen, Germany

mhofmann@informatik.uni-muenchen.de

ABSTRACT

We study the expressive power of non-size increasing recur-
sive definitions over lists. This notion of computation is such
that the size of all intermediate results will automatically be
bounded by the size of the luput so that the interpretation in
4 fiuite model is sound with respect to the standard seman-
tics. Many well-known algorithms with this property such
as the usual sorting algorithims are definable in the system
in the natural way. The main result is that a characteristic
function is defiuable if aud ouly if it is computable iu time
02} for some polynomial p.

The method used to establish the lower bound o the expres-
sive power also shows that the complexity becomes polyno-
ial time if we allow primitive recursion only. This settles
an open question posed i [1,

The key tool for establishing upper bounds on the comple;
ity of derivable functions is an interpretation in a finite rela-
tional model whose correctness with resvect to the standard

consider

exp{nil) = cons(t, nil) (o
explcons(ar, 1)) = twice(exp(l)) @
We have |exp(/)| = 2Vl and further iteration leads to ele-
wentary growth rates.

This shows that innocuous looking recursive definitions can
lead to enormous growth. In order to prevent this from
happesiug it has been suggested in [3, 10] to rule out defi-
nitions like {2) above, where a recursively defined function,
here twice, is applied to the result of a recursive call. Tu-
deed, it has been shown that such discipline restricts the
definable functions to the polynomial-time computable ones
and woreover every polynomial-time computable function
aduits a definition in this style.

Many naturally occurring algorithms, however, do not fit
this scheme. Consider, for instance, the definition of inser-
tion sort

LFPL

From Lambda Calculus to Soft Lambda Calculus

» Lambda calculus A:
M:=z| Xe.M|MM

with no structural constraints.

From Lambda Calculus to Soft Lambda Calculus

» Lambda calculus A:
M:=z| Xe.M|MM

with no structural constraints.
» Linear Lambda Calculus A,

M=z | e.M | Nz M| MM|!M
where x appears linearly in the body of Ax.M, and
(Ax.M)N — M{N/z} (Ma.M)IN — M{N/x}

From Lambda Calculus to Soft Lambda Calculus

» Lambda calculus A:
M:=z| Xe.M|MM

with no structural constraints.
» Linear Lambda Calculus A,

M=z | e.M | Nz M| MM|!M
where x appears linearly in the body of Ax.M, and
(Ax.M)N — M{N/z} (Ma.M)IN — M{N/x}

» Soft Lambda Calculus Ag
M=z | e.M | Nz M| MM|!M

where additional constraints are needed for Alz.M:
» x appears once in M, inside a single occurrence of !...
» ... or x appears more than once in M, outside !.

From Lambda Calculus to Soft Lambda Calculus

» A — A, is a Refinement.

» Whenever a term can be copied, it must be marked as such,
with !.
» A can be embedded into A,

{z} =2
{Ae. M} = Nz M}
[MN} = {(M}{N}

» The embedding does not make use of Az.t.

» Ay — Ag is a Restriction.
» Whenever you copy, you lose the possibility of copying.
» Examples:

Meyze
Meyle
Mzy(lz)x 4

» Some results:
» Polytime soundness;
» Polytime completeness.

Linear Logic

v

v

v

The Curry-Howard Correspondence comes into play.

Linear Logic can be seen as a way to decompose A — B

into A —o B.

—o is the an arrow operator.

® is the a conjunction operator.

! is a new operator governed by the following rules:

14 —olA®IA

IAQIB —ol(A ® B)
1A —ollA
14— A

Nz (x, x)
Mz Ny Nz, y)
Mz !z

Mz.x

Linear Logic

Subsystems...

IARIB ©l(A@B) | 1A oA [1A oA | 1A olAxIA

ELL YES NO NO YES

LLL NO NO NO YES

SLL YES NO A—-A®...®0A

Linear Logic

Subsystems...
IAR!B —!l(A® B) | A —ollA | 1A —o A | 1A —-lAR!A
ELL YES NO NO YES
LLL NO NO NO YES
SLL YES NO A—-AR...®0A

...and their expressive power

ELL | Elementary Functions

LLL | Polytime Functions

SLL | Polytime Functions

Part II1

Boosting the Expressive Power of ICC
Systems

ICC: Intensional Expressive Power

ICC: Intensional Expressive Power

ICC: Intensional Expressive Power

ICC: Intensional Expressive Power

ICC: Intensional Expressive Power

ICC: Intensional Expressive Power

Safe Recursion [BC93|
Light Linear Logic [Girard97]

How Many Terms Could we Catch?

» Very Few, Actually!

How Many Terms Could we Catch?

» Very Few, Actually!

» In BC one cannot capture any of the interesting algorithms
computing the sorting functions, like QuickSort,
MergeSort, InsertionSort.

How Many Terms Could we Catch?

» Very Few, Actually!

» In BC one cannot capture any of the interesting algorithms
computing the sorting functions, like QuickSort,
MergeSort, InsertionSort.

» Idea:

Bounded Linear Logic.

» It is a refinement on (intuitionistic) linear logic:

1'A—1
I A—oA
I Aol AR! A
I Aol A

Bounded Linear Logic.
» It is a refinement on (intuitionistic) linear logic:
1,A—1
lhynA —o A
hmA =0l AL, A
limA =l A

where n and m are natural numbers.

Bounded Linear Logic.
» It is a refinement on (intuitionistic) linear logic:
1,A—1
hinAd — A
hhtmA —ol, AR, A
limA —oly L, A

where n and m are natural numbers.

» More generally, n ad m could be polynomials (on possibly
many variables) and not just natural numbers.

» Moreover, ! can act as a binder for resource variables:
lz<pA. As an example, the following is an axiom:

!a:<p+qA _0!:z:<p"4(g)!y<qf4[:C <y +p]
> Intuitively:

locpA~ Az 0@ Alz 1] ®...®@ Al + p —1].

Quantified Bounded Affine Logic.

» Usual, second order quantification is available in QBAL.
» It was available in BLL, too.

» There is another form of quantification in QBAL: universal
and existential quantification on resource variables:

A(x) : C.A
(@) : C.A

where C is a set of constraints.
» Example:
Az,y) : {z <22y <a}l,eA

Notice that the constraints in {z < 22,y < 2} enforce a
polynomial upper bound on both z and y: z < 22 and
y<zx< 22.
» Not by coincidence! This is a constraint.
» Sequents have the form I' F¢ A.
» Rules for first-order quantifier are standard.

» The rules coming from BLL leaves C unchanged.

Rules: Some Examples

» Axiom:
ALC¢ B

Abc B

Rules: Some Examples

» Axiom:
ALC¢ B

Abc B

» Linear arrow:
T'keA ABlcC
[A,A—-DBFcC

IAlc B

ke A—B 7

Rules: Some Examples

» Axiom:
ALC¢ B

Abc B

» Linear arrow:
I'te A A,BlceC I'Ar¢c B
[LAJA—-BrcC ° TFeA—B '

» Promotion:
Ay, ,Apbe B Dyx<pEC ¢ FV(D) pCp g

P
!ac<q1A17) !J:<ann I_D!:v<pB

Rules: Some Examples

» Axiom:
ALC¢ B

Abc B

» Linear arrow:
I'te A A,BlceC I'Ar¢c B
[LAJA—-BrcC ° TFeA—B '

» Promotion:
Ay, ,Apbe B Dyx<pEC ¢ FV(D) pCp g

P
!ac<q1A17) !J:<ann I_D!yc<1oB

» Existential quantification:
Phe Ap/7} Cl=DH/T)
Lredz:D.A 3
ILAbeup C TE FV(T)UFV(C)UFV(C)
I3z :D: At C

dx

Programming in QBAL...

» ...is not so different from programming in intuitionistic
second-order logic.

» For example, the type of natural numbers has the same
structure:

N, =Va.l,«p(a(zr) — a(z+ 1)) — a(0) — ap)

It is, however, parametrized on a polynomial p.
» Similarly for any word algebra W.

» These types support the usual impredicative iteration
schema.

» The added value provided by first-order quantification will
show up in the embeddings.

How Intentionally Expressive QBAL is?

How Intentionally Expressive QBAL is?

Just look at which ICC systems
can be embeddded into it. ..

How Intentionally Expressive QBAL is?

Just look at which ICC systems
can be embeddded into it. ..

... (compositionally).

Embedding LFPL.

» LFPL is a linear functional language [Hofmann1999|.

Embedding LFPL.

» LFPL is a linear functional language [Hofmann1999|.
All functions are non-size-increasing by construction.
Linear higher-order primitive recursion.

Nested recursion allowed.
Types: A,B:=¢|Nat | A® B| A — B.

vV vy vy

Embedding LFPL.

» LFPL is a linear functional language [Hofmann1999|.
» All functions are non-size-increasing by construction.
» Linear higher-order primitive recursion.

» Nested recursion allowed.
» Types: A,B:=¢| Nat | A® B| A — B.

» The embedding;:
()i =3Fe:{1<p}1
(Nat> =N,
(A® B) = 3(w,y) : {z +y < p}{A)d © (B)]
(A— B) =V(2): {x+p < g}.(A)1 — (B)L,

Embedding LFPL.

» LFPL is a linear functional language [Hofmann1999|.
» All functions are non-size-increasing by construction.
» Linear higher-order primitive recursion.
» Nested recursion allowed.
» Types: A,B:=¢| Nat | A® B| A — B.

» The embedding:
(o)f =3e: {1 <p}.1
(Nat)] =
(A@ B)j = (y){z+y <p}(A)] @ (B)]
(A— B)j =V(x): {z+p < q}(A)] — (B)i,,

and

Embedding LFPL.

» LFPL is a linear functional language [Hofmann1999|.
» All functions are non-size-increasing by construction.
» Linear higher-order primitive recursion.
» Nested recursion allowed.
» Types: A,B:=¢| Nat | A® B| A — B.

» The embedding:
(o)f =3e: {1 <p}.1
(Nat)] =
(A@ B)j = (y){z+y <p}(A)] @ (B)]
(A— B)j =V(x): {z+p < q}(A)] — (B)i,,

and

Embedding LFPL.

» LFPL is a linear functional language [Hofmann1999|.
» All functions are non-size-increasing by construction.
» Linear higher-order primitive recursion.
» Nested recursion allowed.
» Types: A,B:=¢| Nat | A® B| A — B.

» The embedding:

(o)f =3e: {1 <p}.1

(Nat)] =
(A® B)j = (y) H{z +y <ph(A)] @ (B)j
(A— B)j =V(2) : {z + p < ¢}.(A)] — (B)7,,
and
x:A,...,v: Ay - M: B

Embedding BC.

» BC is a characterization of the polytime functions
introduced in the nineties [BC93].

» A subalgebra of the primitive recursion functions.

» Every function f:B"™ — B has m normal arguments and
n — m safe arguments.

» In a recursive definition, the recursive call must go through
a safe argument, while the argument driving the recursion
must be normal.

Embedding BC.

» BC is a characterization of the polytime functions
introduced in the nineties [BC93].

» A subalgebra of the primitive recursion functions.

» Every function f:B"™ — B has m normal arguments and
n — m safe arguments.

» In a recursive definition, the recursive call must go through
a safe argument, while the argument driving the recursion
must be normal.

» The embedding:
f:Bx...xB—BeBC

Embedding BC.

» BC is a characterization of the polytime functions
introduced in the nineties [BC93].

» A subalgebra of the primitive recursion functions.

» Every function f:B"™ — B has m normal arguments and
n — m safe arguments.

» In a recursive definition, the recursive call must go through
a safe argument, while the argument driving the recursion
must be normal.

» The embedding:

f:Bx...xB—BeBC
4

Embedding BC.

» BC is a characterization of the polytime functions
introduced in the nineties [BC93].

» A subalgebra of the primitive recursion functions.

» Every function f:B"™ — B has m normal arguments and
n — m safe arguments.

» In a recursive definition, the recursive call must go through
a safe argument, while the argument driving the recursion
must be normal.

» The embedding:

f:Bx...xB—BeBC
4

Wit s W bai <y n<y Wo(anzm)+y

Embedding BC.

» BC is a characterization of the polytime functions
introduced in the nineties [BC93|.

» A subalgebra of the primitive recursion functions.

» Every function f:B"™ — B has m normal arguments and
n — m safe arguments.

» In a recursive definition, the recursive call must go through
a safe argument, while the argument driving the recursion
must be normal.

» The embedding:

f:Bx...xB—BeBC
4

Wit s W bai <y n<y Wo(anzm)+y

» This is an induction on the structure of the proof that f is
a BC function..

» Interestingly, the embedding is very similar to the proof of
soundness for BC.

Embedding BC.

» BC is a characterization of the polytime functions
introduced in the nineties [BC93|.

» A subalgebra of the primitive recursion functions.

» Every function f:B"™ — B has m normal arguments and
n — m safe arguments.

» In a recursive definition, the recursive call must go through
a safe argument, while the argument driving the recursion
must be normal.

» The embedding:

f:Bx...xB—BeBC
4

Wit s W bai <y n<y Wo(anzm)+y

» This is an induction on the structure of the proof that f is
a BC function..

» Interestingly, the embedding is very similar to the proof of
soundness for BC.

» This cannot be done in ordinary BLL.

What about Light Logics?

» Here the situation is different.

1A —1
1A — A
1A —lAR!A
A —llA

What about Light Logics?

» Here the situation is different.

1A —1

1A —!A®!A

What about Light Logics?

» Here the situation is different.

1A —1

1A —!A®!A

» It is impossible to embed any light logic (except SLL) into
QBAL.

What about Light Logics?
» Here the situation is different.

1A —1

1A —!A®!A

» It is impossible to embed any light logic (except SLL) into
QBAL.

» Actually, ELL can be embedded into (Q)BAL.

A
¢

!:c<0A

What about Light Logics?
» Here the situation is different.

1A —1

1A —!A®!A

» It is impossible to embed any light logic (except SLL) into
QBAL.

» Actually, ELL can be embedded into (Q)BAL.

A
¢

!:c<0A

» But the embedding is not sensible from a dynamical point
of view!

QBAL: Summing Up

» Moral: (a natural extension of) BLL is an interesting ICC
system with strong intensional expressive power:

QBAL

BLL BC LFPL

SLL

QBAL: Summing Up

» Moral: (a natural extension of) BLL is an interesting ICC
system with strong intensional expressive power:

QBAL

RN

BLL BC LFPL

SLL

» Price to pay: the system is not implicit!

Intensional Completeness?

» Extensional Completeness

» The set of all functions computed by programs in S equals
the complexity class P

» S, seen as a language, can have a very low complexity, even
polynomial time in some cases.

» S can be a tiny subset of Lg, thus practically useless for
complexity analysis.

» Many examples: function algebras, light logics, etc.

Intensional Completeness?

» Extensional Completeness

» The set of all functions computed by programs in S equals
the complexity class P

» S, seen as a language, can have a very low complexity, even
polynomial time in some cases.

» S can be a tiny subset of Lg, thus practically useless for
complexity analysis.

» Many examples: function algebras, light logics, etc.

» Intensional Completeness

» The set Lp of all efficient programs equals S.

» S, seen as a language, cannot be recursively enumerable.

» Added value: a bound on the complexity of P € S can often
be read off from the proof of P being an element of S.

» Few examples: d/PCF.

Part IV

Challenges: Cryptography and
Concurrency

Proofs by Reduction

Property(®) o (VD.PPT(D) = Pr(Success(D | ®)) = negl(n)).

Proofs by Reduction

Property(®) o (VD.PPT (D) = Pr(Success(D | ®)) = negl(n)).

Assumption(®) = Security(II)

Proofs by Reduction

Property(®) o (VD.PPT (D) = Pr(Success(D | ®)) = negl(n)).

Assumption(®) = Security(II)

Examples

Proofs by Reduction

Property(®) o (VD.PPT (D) = Pr(Success(D | ®)) = negl(n)).

Assumption(®) = Security(II)

Examples
OneWay(f) = PRG(G)

Proofs by Reduction

Property(®) o (VD.PPT (D) = Pr(Success(D | ®)) = negl(n)).

Assumption(®) = Security(II)

Examples

OneWay(f) = PRG(G)
PRG(G) = IND(II)

Proofs by Reduction

Proofs by Reduction

N
O

Pava

Proofs by Reduction

N
O

Pava

Proofs by Reduction

N
O

Pava

An Example

& Introduction ta Modern Cryptography

THEOREM 3.8 If G is o psendorandom generator, then Construc-
tion 3,17 is o fized-length private-key eneryption scheme that has indistin-
guishable encryptions in the presence of an cavesdropper.

PROOF Let 11 denote Construction 3.17. We show that I1 satisfies Def-
mitian 3.8 Namely, we sbow that for any probabilistic polynomial time ad-
versary A there is & negligible finetion negl such that

Pr [PivKin(m) = 1) < % + megl(m). 32)

i intuition is that i 1 used a uniform pad in place of the pseudorandom
padd G(E), then the resulting scheme would be idestical to the one-time pad
encryption scheme and A4 would be unnble to correstly i

wns encrypted with probability any better than 1/2. Thus, if Equation (3.2)
does not hold then A must implicitly be distinguishing the output of G from
& mndom string, We make this explicit by showing & reduction; aamely,
by showing bow to use A to construct an efficient distinguisher D, with the
property that s ability to distinguish the autput of G from & uniform string
& dlireetly related to A's ability to which message was
by L. Security of G then implies security of IL

Let A be nn arbitrary PPT adversary. We construet a distinguisher D that
takes & string w as input, Mwh:gﬂdkmdﬁumﬁuwmhswm
chosen uniformly (ie., w i & *random string”) or whether
by chioosing a uniform k and computing w = G(k} (ie., :ul'p:udulmdm
string”). We construct 1) 5o that it emulates the eavesdropping experiment
for A, ns described belw, and observes whether 4 succeeds o sat. If 4.
succeeds then D guesses that w musst be a prendorandom string, while if A
does ot suseced then D gueses that w & & rasdom string. In detail:

Distinguisher D
D is given as input a string w € {0,1]9%). (We neume that n can
be determined from £(n).)
1. Run A(1") to obtain a pair of messages mg,m, € (0,1},
2. Choose a uniform bit b & {0,1]. Set o:= w@m.
3. Give e to A aad obtain cutpat &, Output 1if & = b, asd
output 0 otherwise.
D elearly runs in polynomial time (nssuming A does).
_ Befare analyxing the behnvior of D, we define a modified eneryption scheme
_(&.Egbx]mnswuxw&mwcmymmmm
eeplthn-em' pacnmeter that length
of the memage to heuuu'y‘plui m-,l;mu-) outputs & uniform key k of
length £(r), and the encryption of mesage m € 267 using key k € {0,1}47

Private-Key Encryption a

& the & k@ m. (Decryption can be performed ns wunl, but is
m’mulwwhnlbllmnj Perfet seereey of the oue-time pad imples

Pr |PrivKZ (n) = @3)

3
To nnalyze the behavior of D, the main observations are:

1 Ilw-ehmumlntmly&nm“] |}’£'0 (Mnlbcmn‘A-I:s:nmm.

& distributed It
P-uK";,(n) Thnsbn:nmewhunglunmulmhmnehyb(m]m
this ense, 4 s given a ciphertext ¢ = w@mg where w € {0,114 is uni-
form. Since D outputs | exaetly when A susceeds i its eavesdropping
experiment, we therefore bave (of. Equation (3.3))

1
Proc o= [D(w) = 1) = Pr | Pk (m) = 1] =3 @9
(The subseript on the first probahility just makes explicit that w is
chosen uniformly from {0, 1}4™) there)
2. If w is instend genernted by choosing uniform k € {0,1)" and then
sctting w = G(K), the view of A when Tun as a subroutine by D i
distributed identically to the view of A in experiment Priviy (n). This

s beeue 4, when run as & subroutine by D, is now given a ¢
&= w®mp where w= G(k) for & uniform & € {0,1]". Thus,

Pric oo D(G(R) = 1] =Pr Pk (m) =1]. (335)

Since G is n pseudorandom generator (and since D runs in polynomial time),
we knw there is o pegligible function negl such that
Pruc o emD(w) =1 = Py g [DIG(E)) = ll‘ = negl(n).

Using Equations (3.4) and (3.5), we thus see that
1
!T Pr [PrivkS) = 1]| = negl(n),

which implies Pr [PmK"',.(n; = 1] + nql(n) Sinee A wns an arbitrary
FPT ndversary, this mnpiﬂu I bas indistinguishable eneryp-
|]

m-mthemunfnavubuwa

Tt is easy to get Jost in the details of the proof and wonder whether naything
s boen gained as compared to the ape-time pad; after all, the ane-time pad
also encrypes nn £-bit mesage by XORing it with nn £-bit string! The point
of the construction, of course, & that the £bit string G(K) can be mush

An Example

& Introduction ta Modern Cryptography Private-Key Encryption a

& the ciphertext ¢ == k@ m. (Decryption ean be performed s wual, but is

THEOREM 3.8 If G is o psendorandor generator, then
inesseatial to what follows.) Perfeet secrecy of the cae-time pad imphies

Construe-
tion 317 ia o fized-length private-key encryption scheme that has indistin-
guishable encryptions in the presence of an eavesdropper.

PROOF Let 11 denote Construction 3.17. We show that I1 satisfies Def.
mitian 3.8 Namely, we sbow that for any probabilistic polynomial time ad-
versary A there is & negligible finetion negl such that

Pr PrivK::‘n(n}zl] :;_ (@3)

To nnalyze the behavioe of I, the main observations are:
1. If wis chosen uniformly from {0, 1147, then the view of 4 when run nsa
@2 subroutine by [& distributed identically to the view of A in experiment
PrvKS, (n). This is becnuse when A is run s a subeoatine by D{w) in
this ense, 4 B given a ciphertext & = w@mg where w € {0,147 is uni-

P [Pkt 1] = 3+ negl.

The intuition is that if 1 used a uniform pad in place of the

If w is chosen uniformly from {0, 1}*\™), then the view of A when run as a
subroutine by D is distributed identically to the view of A in experiment
PrivK®}'5(n). This is because when A is run as a subroutine by D(w) in

this case, A is given a ciphertext ¢ = w® my where w € {0, l}e(") is uni-
form. Since D outputs 1 exactly when A succeeds in its eavesdropping
experiment, we therefore have (cf. Equation (3.3))

1
Pr e D) =11 = PrPavk® () =1l = 2 (34)
1. Run A(1”) to obtain a pair of messages mg,m, € (0,1},

= meglin),

2. Chioose a uniform bit b € {0,1). Set &:= w@my.
3. Give ¢ to A nnd obtain output B, Output 13 & = b, and
output 0 ocherwise.

D elenrly runs in polynomial time (nssaming 4 does).
_ Befare analyxing the behnvior of D, we define a modified eneryption scheme
_(&Embx)thluuuﬂytkwa-uw}.dcmyptmmkm,ex-
m.plt we now incorpor parnmeter that length
of the memage to heulsy]isl’l'h-l! Gul(l"]wutyu‘snnm.ﬁwmkr) of
length £(r), and the encryption of mesage m € 267 using key k € {0,114

IlfPr[PrivK:]"

which implies Pr [me“,,(ny 1] = £ + negl(n). Sinee 4 was an arbitrary
FPT ndversary, this mn;igus roof that 11 bas indistinguishable eneryp-
|]

lmlmthcyuuwea[lnuvuimppu

T i casy to et kst in the details of the peoof and wonder whether anything

An Example

& Introduction ta Modern Cryptography

THEOREM 3.8 If G is o psendorandom generator, then Construc-
tion 3.17 is o fized-length private-key eneryption scheme that has indistin-
guishable encryptions in the presence of an cavesdropper.

PROOF Let 11 denote Construction 3.17. We show thut IT satisfies Def-
mitian 3.8 Namely, we sbow that for any probabilistic polynomial time ad-
versary A there is a negligible function negl such that

P [Pkt 1] = 3+ negl. @2)

The intuition is that if I used a uniform pad in place of the

Private- Key Eneryption a
& the ciphertext ¢ == k@ m. (Decryption can be performed ns wunl, but is
inesseatial to what follows.) Perfiet secrecy of the cae-time pad implies

Pr PrivK::‘n(n}zl] :;_ (@3)

To nnalyze the behavioe of I, the main observations are:

1. If wis chosen uniformly from {0, 1147, then the view of 4 when run nsa
subroutine by [& distributed ddentically to the view of A in experiment
PrvKS, (n). This is becnuse when A is run s a subeoatine by D{w) in
this ense, 4 B given a ciphertext ¢ = w@mg where w € {0,147 is uni-

If w is chosen uniformly from {0, 1}*\™), then the view of A when run as a
subroutine by D is distributed identically to the view of A in experiment
PrivK®'5(n). This is because when A is run as a subroutine by D(w) in

this case, A is given a ciphertext ¢ = w® my where w € {0, l}e(") is uni-
form. Since D outputs 1 exactly when A succeeds in its eavesdropping
experiment, we therefore have (cf. Equation (3.3))

2. Chioose a uniform bit b € {0,1). Set &:= w@mi.
3. Give ¢ to A nnd obtain output B, Output 13 & = b, and
output 0 ocherwise.

D elenrly runs in polynomial time (nssaming 4 does).
_ Befare analyxing the behnvior of D, we define a modified encryption scheme
_(&Embx)thluuuﬂytkwa-uw}.dcmyptmmkm,ex-
m.plt we now incorpoe parnmeter that length
of the memage to heulsy]isl’l'h-l! Gul(l"]wutyu‘snnm.ﬁwmkr) of
length £(r), and the encryption of mesage m € 267 using key k € {0,114

1
Pr e D) =11 = PrPavk® () =1l = 2 (34)
1. Run A(1") to obtain a pair of messages mg,m, € (0,1},

Il,p, [Privk = neglin),

which implies Pr [me“,,(ny 1] = £ + negl(n). Sinee 4 was an arbitrary
FPT ndversary, this mn;igus roof that 11 bas indistinguishable eneryp-
]

lmlmthcyuuwea[lnuvuimppu

T i casy to et kst in the details of the peoof and wonider whether anything

An Alternative Viewpoint

1. Introduce a A-calculus RSLR, and prove it complete for
probabilistic polynomial-time computation
|[Zhang10,DLPT11].

» RSLR is nothing more than a randomized variation on
Hofmann’s SLR obtained by endowing the latter with a
primitive f1ip.

An Alternative Viewpoint

1. Introduce a A-calculus RSLR, and prove it complete for
probabilistic polynomial-time computation
|[Zhang10,DLPT11].

» RSLR is nothing more than a randomized variation on
Hofmann’s SLR obtained by endowing the latter with a
primitive f1ip.

2. Define a notion of equivalence close enough to
computational indistinguishability.

» Two distribution ensembles {D,,} and {&,} are
computational indistinguishable when no PPT algorithm
can distinguish between them with more than a negligible
probability of success.

An Alternative Viewpoint

1. Introduce a A-calculus RSLR, and prove it complete for
probabilistic polynomial-time computation
|[Zhang10,DLPT11].

» RSLR is nothing more than a randomized variation on
Hofmann’s SLR obtained by endowing the latter with a
primitive f1ip.

2. Define a notion of equivalence close enough to
computational indistinguishability.

» Two distribution ensembles {D,,} and {&,} are
computational indistinguishable when no PPT algorithm
can distinguish between them with more than a negligible
probability of success.

3. Prove an appropriate context lemma in the form of
full-abstraction for trace equivalence.

Cryptographic Reductions, More Formally

AN

)

M

D

o,

Cryptographic Reductions, More Formally

£\
1]

M

D

o,

» From the fact that M # N. ..

Cryptographic Reductions, More Formally

SK,D M D LHe
EE]]
[[NED:>P§5
f]]

» From the fact that M # N. ..

» ...one derives the existence of a context D separating M
and N...

» ...from which, thanks to full abstraction, one derives the
existence of a trace T which separates M and N...

» ...from which one builds a trace S separating L and P.

Probabilistic ICC: Challenges

» Besides applications to cryptographic proofs, there is also
the question of better understanding probabilistic
complexity classes like ZPP or BPP.

Probabilistic ICC: Challenges

» Besides applications to cryptographic proofs, there is also
the question of better understanding probabilistic
complexity classes like ZPP or BPP.

» There is however an inherent difficulty in pursuing this
goal!

» Classes like ZPP or BPP, as opposed to P, NP, PSPACE,
etc. which are syntactic, are semantic: there is no easy way
to enumerate even the machines which define the class.

» This is due to the fact that “BPP-machines” are required to
produce the correct output only with a certain probability,
and checking so is not trivial.

» But how about characterizing (interesting) subclasses of
them? This is an excellent research topic!

[CC and Concurrency?

» The computational models we have considered so far are
sequential. How about concurrent models of computation?

[CC and Concurrency?

» The computational models we have considered so far are
sequential. How about concurrent models of computation?

» The prototypical example of such a model of computation
is Milner’s m-calculus, in which so-called processes take the
place of terms.

» A m-calculus process can be seen as modeling a systems of n
threads T1,...,T, which run in parallel.

» The threads can interact by exchanging messages through
channels, which themselves can contain addresses of other
channels.

[CC and Concurrency?

» The computational models we have considered so far are
sequential. How about concurrent models of computation?

» The prototypical example of such a model of computation
is Milner’s m-calculus, in which so-called processes take the
place of terms.

» A m-calculus process can be seen as modeling a systems of n
threads T1,...,T, which run in parallel.

» The threads can interact by exchanging messages through
channels, which themselves can contain addresses of other
channels.

» Exactly as for programs/terms/algorithms, we would like
processes to be efficient.

» But what does it mean?

Higher-Order m-Calculus

» Processes:

Vi=x%|\x.P
P:=0|x|P||P|alx).P|a(V).P|(va)P|VV

» Reduction:

a(V).P || a(x).Q —p P || Qlz/V] (Ax.P)V —p Plz/V]

P—pQ P—=pQ
PllR—=p Q| R (va)P —p (va)@Q

P=Q Q—pR R=S
P—>pS

Higher-Order m-Calculus

» Nontermination:

V = My.alz).(z + || alz))
Q=Vx|[aV)

Indeed:
Q—=0Q—...
» More interesting example:

V = Az.a(x).(b{y).c(y).x * || a(x))
Q=Vx[laV)

Linear Higher-Order 7-Calculus: LHO7

» Generalizing A = A to processes.

» Values and Processes:

Vi=x|z|Xx.P| Nz P |V
P:=0|P||P|alx).P|a(lx).P|a(V).P| (va)P | VV

where
AT P g T OCCurs once in P
a(z).P at level 0
» Examples:

a{x).ox v

a(lz).(xx || lzx) v

a(lx).a(z).b(x).0 v

a(lz).(b(y).c(y).x * || a(lz).0) v

a(x).(lz)* 4

Linear Higher-Order m-Calculus : LHO7

» Reduction:

a(V).P |l afz).Q =L P || Qz/V]

a(V).P |l allz).Q =L P || Qz/V]

(Ax.P)V — P[z/V] (Alz.P)IV —| Plz/V]
P —L Q P —L Q
PlIIR=L QIR (va)P =L (va)@Q

P=Q Q—-L R R=S
P—)LS

Embedding LHO7 Into HO7

>

Jv =~*
[Ax.P]y = Ax.[P]p
[0]p =0
[z]p =z
[P [Qlr = [Plp || [Qlp
[a(z).Plp = a(lx).[P]p
[a(V).Plp = a(![V]v).[Plp
(va)Plo = (va) Ple
VV]e = [VIV!I[V]v

Proposition (Simulation)
If P —p Q, then [Plp — [Q]p

Soft Processes: SHOx

> Generalizing Ay = Ag to processes.

» Linear processes with some additional constraints:

Av. P g T OCCurs once in P

a(z).P at level 0
T occurs once in P
at level 1
AMx. P _—
I T occurs in
a(.x).P at level ()

Soft Processes: Examples

a(r).r * v

Soft Processes: Examples

a(r).r * v

a{lx).(zx || (lz)x)

Soft Processes: Examples

a(r).r * v

allx).(xx || lz)x) 4

a(lz).a(z).b(z).0 v

Soft Processes: Examples

a(r).r * v

allx).(xx || lz)x) 4

a(lz).a(z).b(z).0 v

Polytime Soundness

Theorem

There is a family of polynomials {pn}n such that for every
process P and for every m, if P —{" Q, then

m,|Q| < pyp)(|P])-

Polytime Soundness

Theorem

There is a family of polynomials {pn}n such that for every
process P and for every m, if P —{" Q, then

m, Q| < pr(p)(|P]).

» We can generalize polytime soundness by considering
labelled semantics

™o P o
Theorem
If P =P, O P, and the input actions among aq, .. ., an

are a1(R1), ..., am(Rp), then

1, || < Prax(p(P) (R} (IPL + D |Ril)

i=1

Concurrent ICC: Challenges

» Does it make sense to measure time in terms of the number
of interleaving reduction steps?

Concurrent ICC: Challenges

» Does it make sense to measure time in terms of the number
of interleaving reduction steps?

» The answer is negative: one should rather count “how much
computation” stimuli from the environment (i.e., messages)
can possibly trigger.

Concurrent ICC: Challenges

» Does it make sense to measure time in terms of the number
of interleaving reduction steps?

» The answer is negative: one should rather count “how much
computation” stimuli from the environment (i.e., messages)
can possibly trigger.

» Linking events to the “complexity” triggered by them is
impossible in interleaving semantics, and one is then forced
to go towards true concurrency [DLHMV12].

» A recent contribution [DemangeonYoshidal8]| is the first
one seriously going in this direction.

Concurrent ICC: Challenges

» Does it make sense to measure time in terms of the number
of interleaving reduction steps?

» The answer is negative: one should rather count “how much
computation” stimuli from the environment (i.e., messages)
can possibly trigger.

» Linking events to the “complexity” triggered by them is
impossible in interleaving semantics, and one is then forced
to go towards true concurrency [DLHMV12].

» A recent contribution [DemangeonYoshidal8]| is the first
one seriously going in this direction.

» Another excellent research topic!

Thank you!

(Questions?

	A Short Introduction to Implicit Computational Complexity
	Implicit Complexity and the Curry-Howard Correspondence
	Boosting the Expressive Power of ICC Systems
	Challenges: Cryptography and Concurrency

