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About This Course

1. Introduction to Implicit Computational Complexity.
I Approximately one hour.

2. Implicit Complexity through the Curry-Howard
Correspondence.

I Approximately one hour.
3. Boosting the Intensional Expressive Power of ICC

Systems.
I Approximately half an hour.

4. Challenges and Pespectives: Probabilistic and
Concurrent Computation.

I Approximately half an hor.

I Website: http://www.cs.unibo.it/~dallago/CSCICC/
I Email: ugo.dallago@unibo.it

I Please contact me if you have any questions about the
topics of this course.

http://www.cs.unibo.it/~dallago/CSCICC/
ugo.dallago@unibo.it
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Part I

A Short Introduction to Implicit
Computational Complexity



Implicit Computational Complexity

I Goal
I Machine-free characterizations of complexity classes.
I No explicit reference to resource bounds.
I P, PSPACE, L, NC,. . .

I Why?
I Simple and elegant presentations of complexity classes.
I Formal methods for complexity analysis of programs.

I How?
I Recursion Theory [BC92], [Leivant94], . . .
I Type Systems and λ-calculi [Hofmann97], . . .
I Proof Theory, via Cut-Elimination [Girard95], . . .
I . . .



Implicit Computational Complexity

I Goal
I Machine-free characterizations of complexity classes.
I No explicit reference to resource bounds.
I P, PSPACE, L, NC,. . .

I Why?
I Simple and elegant presentations of complexity classes.
I Formal methods for complexity analysis of programs.

I How?
I Recursion Theory [BC92], [Leivant94], . . .
I Type Systems and λ-calculi [Hofmann97], . . .
I Proof Theory, via Cut-Elimination [Girard95], . . .
I . . .



Implicit Computational Complexity

I Goal
I Machine-free characterizations of complexity classes.
I No explicit reference to resource bounds.
I P, PSPACE, L, NC,. . .

I Why?
I Simple and elegant presentations of complexity classes.
I Formal methods for complexity analysis of programs.

I How?
I Recursion Theory [BC92], [Leivant94], . . .
I Type Systems and λ-calculi [Hofmann97], . . .
I Proof Theory, via Cut-Elimination [Girard95], . . .
I . . .



Complexity Classes
I Algorithms consume resources (time, space,
communication, energy).

I How could one formalize the concept of being efficient with
respect to a given resource?

I A Measure
I One can assign to any algorithm P an upper bound on the

amount of resources (of a certain kind) P needs when
executed.

I This can be either precise or asymptotic.
I The more precise, the more machine-dependent.

I A Predicate
I The amount of resources P needs when executed is bounded

by a function in a “robust” class. Examples:
I Polynomial Functions.
I Logarithmic Functions.
I Elementary Functions.

I Complexity Class: the set of those functions computed
by algorithms satisfying the predicate.
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Characterizing Complexity Classes

L C
Programs Functions

I These are not (necessarily)
machines.

I There is no natural notion
of of cost model.

I Writing algorithms is
easier.
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Proving JSK = P

I P ⊆ JSK
I For every function f which can be computed within the

bounds prescribed by P, there is P ∈ S such that JP K = f .

I JSK ⊆ P
I Semantically

I For every P ∈ S, JP K ∈ P is proved by showing that some
algorithms computing JP K exists which works within the
prescribed resource bounds.

I P ∈ L does not necessarily exhibit itself a nice
computational behavior.

I Operationally
I Sometimes, L can be endowed with an effective operational

semantics.
I Let LP ⊆ L be the set of those programs which work

within the bounds prescribed by C.
I JSK ⊆ P can be shown by proving S ⊆ LP .
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Function Algebras
I Computation can be formalized by way of machines, like

Turing machines, RAM, counter machines, etc.
I Defining the amount of resources the machine consumes is
easy.

I Writing algorithms as machines is difficult.
I Every such class of machines implicitly defines a class of
functions.

I Another, different, way to capture computation is as
follows:

I Start from a set of basic functions. . .
I . . . and close it under some operators.

I The set of recursive functions is the smallest set of
functions which contains the basic functions and which is
closed with respect to the operators.

I Where is the machine? Where are the programs?
I They are the proofs of recursivity, which are finitary.
I As such, they support an induction principle.
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Kleene’s Function Algebra — Basic Functions

I Zero. The function z : N→ N defined as follows: z(n) = 0
for every n ∈ N.

I Successor. The function s : N→ N defined as follows:
s(n) = n+ 1 for every n ∈ N.

I Projections. For every positive n ∈ N and for whenever
1 ≤ m ≤ n, the function Πn

m : Nn → N is defined as follows:
Πn
m(k1, . . . , kn) = km.



Kleeene’s Function Algebra — Operations (I)

I Composition. Suppose that n ∈ N is positive, that
f : Nn → N and that gm : Nk → N for every 1 ≤ m ≤ n.
Then the composition of f and g1, . . . , gn is the function
h : Nk → N defined as h(~i) = f(g1(~i), . . . , gn(~i)).

I Primitive Recursion. Suppose that n ∈ N is positive,
that f : Nn → N and that g : Nn+2 → N. Then the function
h : Nn+1 → N defined as follows

h(0, ~m) = f(~m);

h(k + 1, ~m) = g(k, ~m, h(k, ~m));

is said to be defined by primitive recursion from f and g.



Kleene’s Function Algebra — Operations (II)

I Minimization. Suppose that n ∈ N is positive and that
f : Nn+1 ⇀ N. Then the function g : Nn ⇀ N defined as
follows:

g(~i) =


k if f(0,~i), . . . , f(k,~i) are all defined

and f(k,~i) is the only one in the list being 0.
↑ otherwise

is said to be defined by minimization from f .



Functional Programs — Preliminaries

I Signature. It is a pair S = (Σ, α) where:
I Σ is an alphabet;
I α : Σ→ N assigns to any symbol c in Σ a natural number
α(c), called its arity.

I Examples.
I The signature SN defined as ({0, s}, αN) where αN(0) = 0

and αN(s) = 1.
I The signature SB defined as ({0, 1, e}, αB) where
αB(0) = αB(1) = 1 and αB(e) = 0.

I Given two signatures S and T such that the underlying set
of symbols are disjoint, one can naturally form the sum
S + T .
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Functional Programs

I Closed Terms. Given a signature S = (Σ, α), they are the
smallest set of expressions C(S) satisfying the following
closure property: if f ∈ Σ and t1, . . . , tα(f) ∈ C(S), then
f(t1, . . . , tα(f)) ∈ C(S).

I Examples.

C(SN) = {0, s(0), s(s(0)), . . .};
C(SB) = {e, 0(e), 1(e), 0(0(e)), . . .}.

I Open Terms. Given a set of variables L distinct from Σ,
the set of open terms O(S,L) is defined as the smallest set
of words including L and satisfying the closure condition
above.



Functional Programs

I Functional Programs on S = (Σ, α) and T = (Υ, β):

P ::= R | R,P
R ::= l→ t

l ::= f1(p11, . . . ,p
α(f1)
1 ) | . . . | fn(p1n, . . . ,pα(fn)n )

where:
I Σ = {f1 . . . , fn} and that Υ is disjoint from Σ.
I the metavariables pkm range over O(T ,L),
I t ranges over O(S + T ,L).



Functional Programs

I Example:

add(0, x)→ x

add(s(x), y)→ s(add(x, y)).

I The evaluation of add(s(s(0)), s(s(s(0)))) goes as follows:

add(s(s(0)), s(s(s(0))))→ s(add(s(0), s(s(s(0)))))

→ s(s(add(0, s(s(s(0))))))

→ s(s(s(s(s(0))))).



Functional Programs
I Example:

append(e, x)→ x

append(0(x), y)→ 0(append(x, y))

append(1(x), y)→ 1(append(x, y)).

I Example:

reverse(e)→ e

reverse(0(x)→ 1(reverse(x))

reverse(1(x)→ 0(reverse(x)).

I Example:

replicate(e, x)→ e

replicate(0(x), y)→ append(replicate(x, y), y)

replicate(1(x), y)→ append(replicate(x, y), y).



λ-Calculus

I Terms:
M ::= x | λx.M |MM,

I The term obtained by substituting a term M for a variable
x into another term N is denoted as N{M/x}.

I Values:
V ::= x | λx.M.

I Reduction:

(λx.M)V →v M{V/x}
M →v N

ML→v NL
M →v N

LM →v LN

Here M ranges over terms, while V ranges over values.
I Normal Forms. Any term M such that there is not any
N with M →v N . A term M has a normal form iff
M →∗v N . Otherwise, we write M ↑.

I This is just one way of evaluating
terms, the so called weak
call-by-value evaluation.

I An alternative would be
call-by-name, which however
tends to be inefficient in many
cases.
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λ-Calculus — Computing on N

I Scott’s Numerals.

p0q = λx.λy.x;

pn+ 1q = λx.λy.ypnq.

I Representing Functions. A λ-term M represents a
function f : N⇀ N iff for every n, if f(n) is defined and
equals m, then Mpnq→∗v pmq and otherwise Mpnq ↑



Computability

I For the three introduced computational models, one can
define the class of functions from N to N they compute.

I Unsurprisingly, they are all the same: the three models are
all Turing-powerful.

I This means, in particular, that programs in the three
formalisms can be, in general, very inefficient.

I They can compute whatever (computable) function one can
imagine, after all!

I Is there a way to isolate the efficient recursive functions,
functional programs, and λ-terms?

I First of all, we need to understand what it means for such
things to be efficient.
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Cost Models

I Let us focus our attention to time complexity.
I How do we measure the amount of time a computation

takes in the three models we described?
I Functional Programs: number of reduction steps?

I λ-Calculus: number of reduction steps?
I Function Algebra: ?

I Invariance Thesis [SvEB1980]: a cost model is reasonable
iff the class of polytime computable functions is the same as
the one defined with Turing programs.

I The most interesting cost models are, clearly, the unitary
ones. They are not always invariant by definition, however.
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Complexity Classes as Function Algebras?

I Recursion on Notation: since computation in unary
notation is inefficient, we need to switch to binary notation.

I What Should we Keep in the Algebra?
I Basic functions are innoquous.
I Polytime functions are closed by composition.
I Minimization introduces partiality, and is not needed.
I Primitive Recursion?

I Certain uses of primitive recursion are dangerous, but if we
do not have any form of recursion, we capture much less
than polytime functions.
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Safe Recursion [BellantoniCook93]

I Safe Functions: pairs in the form (f, n), where
f : Bm → B and 0 ≤ n ≤ m.

I The number n identifies the number of normal arguments
between those of f : they are the first n, while the other
m− n are the safe arguments.

I Following [BellantoniCook93], we use semicolons to
separate normal and safe arguments: if (f, n) is a safe
function, we write f( ~W ; ~V ) to emphasize that the n words
in ~W are the normal arguments, while the ones in ~V are
the safe arguments.



Basic Safe Functions

I The safe function (e, 0) where e : B→ B always returns the
empty string ε.

I The safe function (a0, 0) where a0 : B→ B is defined as
follows: a0(W ) = 0 ·W .

I The safe function (a1, 0) where a1 : B→ B is defined as
follows: a1(W ) = 1 ·W .

I The safe function (t, 0) where t : B→ B is defined as
follows: t(ε) = ε, t(0W ) = W and t(1W ) = W .

I The safe function (c, 0) where c : B4 → B is defined as
follows: c(ε,W, V, Y ) = W , c(0X,W, V, Y ) = V and
c(1X,W, V, Y ) = Y .

I For every positive n ∈ N and for whenever 1 ≤ m, k ≤ n,
the safe function (Πn

m, k), where Πn
m is defined in a natural

way.



Safe Composition

(f : Bn → B,m)

(gj : Bk → B, k) for every 1 ≤ j ≤ m

(hj : Bk+i → B, k) for every m+ 1 ≤ j ≤ n

⇓

(p : Bk+i → B, k) defined as follows:

p( ~W ; ~V ) = f(g1( ~W ; ), . . . , gm( ~W ; );

hm+1( ~W ; ~V ), . . . , hn( ~W ; ~V )).
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(Simultaneous) Safe Recursion

(f i : Bn → B,m) for every 1 ≤ i ≤ j
(gik : Bn+j+2 → B,m+ 1) for every 1 ≤ i ≤ j, k ∈ {0, 1}

⇓

(hi : Bn+1 → B,m+ 1) defined as follows:

hi(0, ~W ; ~V ) = f i( ~W ; ~V );

hi(0X, ~W ; ~V ) = gi0(X, ~W ; ~V , h1(X, ~W ; ~V ), . . . , hj(X, ~W ; ~V ));

hi(1X, ~W ; ~V ) = gi1(X,
~W ; ~V , h1(X, ~W ; ~V ), . . . , hj(X, ~W ; ~V ));
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Classes of Functions

I BCS is the smallest class of safe functions which includes
the basic safe functions above and which is closed by safe
composition and safe recursion.

I BC is the set of those functions f : B→ B such that
(f, n) ∈ BCS for some n ∈ {0, 1}.



Lemma (Max-Poly Lemma)
For every (f : Bn → B,m) in BCS, there is a monotonically
increasing polynomial pf : N→ N such that:

|f(V1, . . . , Vn)| ≤ pf

 ∑
1≤k≤m

|Vk|

 + max
m+1≤k≤n

|Vk|.

Proof.
I An induction on the structure of the proof a function being

in BCS.
I The restriction to safe recursion is essential.
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Theorem (Polytime Soundness)
BC ⊆ FP{0,1}.

Proof.
I This is an induction on the structure of the proof of a

function being in BCS.
I The proof becomes much easier if we first prove that

simultaneous primitive recursion can be encoded into
ordinary primitive recursion.

I We make essential use of the Max-Poly Lemma.
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Which Cost Model?
I Is it sensible to take the number of reduction steps as a

measure of the execution time of a functional program P?

I Apparently, the answer is negative.
I Consider

f(0)→ nil

f(s(x))→ g(f(x))

g(x)→ bin(x, x).

I We need to exploit sharing!
I Can we perform rewriting on shared representations of

terms?
I Does all this introduce an unacceptable overhead?

Theorem (DLMartini2009)
The unitary cost model is invariant, both in functional program
and in the λ-calculus.
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The Interpretation Method
I Domain: a well-founded partial order (D,≤).
I Assignment A for a signature S = (Σ, α): to every symbol
f in Σ, one puts in correspondence a function

[f]A : Dα(f) → D

which is strictly increasing in any of its argument w.r.t. ≤.
I Given an assignment A, one can generalize it to a map on

closed and open terms.
I Interpretation for a functional program P : an assignment

such that for every rule l→ t, it holds that

[l]A > [t]A

Theorem (Lankford1979)
A functional program P is terminating iff there is one
interpretation for it.



Polynomial Interpretations
I What if we choose N as the underlying domain, and

polynomials on the natural numbers as the functions
intepreting them?

I Do we get a characterization of polynomial time
computable functions?

I Not really!
I Suppose that f is a unary function symbol, and that t is a

closed term in, say, C(SB).
I If f(t)→n s, then n ≤ [f(t)]A = [f]A([t]A)
I But [t]A can be much bigger than |t|.
I Everything depends on the way you interpret data!
I You need to restrict to polynomial interpretations in which

data are interpreted additively, e.g.

[e] = 0; [0](x) = x+ 1; [1](x) = x+ 1.

Theorem (BCMT2001)
Additive polynomial intepretations characterize polynomial time
computable functions.
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Other Techniques

I Path Orders
I Originally introduced for termination.
I PPO, MPO, LPO, . . . .
I Later refined to guarantee polytime complexity.

I LMPO [Marion2003].
I POP∗ [AM2008].

I Quasi-Interpretations
I Obtained by combining interpretations and path orders

[BMM2011].
I The value of the lhs can be equal to the rhs.
I Intensionally very powerful.
I Various classes can be characterized (in particular, FP and

FPSPACE).
I Not sound for the unitary cost model.



Part II

Implicit Complexity and the
Curry-Howard Correspondence



Definition

I A direct relationship between:
I Programs, seen as computational objects.
I Proofs, seen as logical objects.

I This extends to various key concepts in logic and
programming:

Logic Programming
Formulas Types
Implication Function Type

Introduction Rule Constructor
Elimination Rule Destructor
Normalization Computation



Examples — Hilbert-Style Proofs
I Combinatory Logic

M ::= x | S | K |MM

I Typed CL vs. Hilbert-style Proofs

α ∈ Γ
Γ ` α

x : α ∈ Γ
Γ ` x : α

Γ ` α→ (β → α) Γ ` K : α→ (β → α)

Γ ` (α→ (β → γ))→
(α→ β)→ (α→ γ)

Γ ` S :
(α→ (β → γ))→
(α→ β)→ (α→ γ)

Γ ` α→ β
Γ ` α
Γ ` β

Γ `M : α→ β
Γ ` N : α

Γ `MN : β



Examples — Natural Deduction

I λ-Calculus
M ::= x | λx.M |MM

I Typed λ-Calculus vs. Natural Deduction

α ∈ Γ
Γ ` α

x : α ∈ Γ
Γ ` x : α

Γ, α ` β
Γ ` α→ β

Γ, x : α `M : β

Γ ` λx.M : α→ β

Γ ` α→ β
Γ ` α
Γ ` β

Γ `M : α→ β
Γ ` N : α

Γ `MN : β



Examples — Extensions
I Intuitionistic Second-Order Logic

I One can endow the underlying logic with conjunctions,
disjunctions, and second order quantification.

I On the side of programs, one could proceed by adding pairs,
projections, etc.

I This way, the correspondence continues to hold.
I The obtained language, called F, enjoys strong

normalization.

I Heyting Arithmetic
I One can endow (intuitionistic) first-order logic with the

Peano’s axioms for the natural numbers, and an induction
principle.

I The obtained formal system can be, following Gödel, be
realized by terms in an extension of the simply-typed
λ-calculus:

Γ ` Z : nat Γ ` S : nat → nat

Γ ` R : nat → (nat → α→ α)→ α

I Again the obtained language, called T, enjoys strong
normalization.
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Complexity?
I Simply-Typed λ-Calculus

I Data are represented via their Church-encoding, e.g.

natα = (α→ α)→ α→ α

pnq = λx.λy. x . . . x︸ ︷︷ ︸
n times

y

I On the one hand, normalization is known to have at least
elementary complexity [Statman1977,FLOD1983]

I On the other hand, equality cannot be
represented [Statman1982]

I System F
I We can go polymorphic:

nat = ∀α.(α→ α)→ α→ α

I The representable functions are the ones which are provably
total in second-order arithmetic.

I System T
I The fact the language realizes HA implies that the

representable functions are the provably total functions of
PA.
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λ-Calculus and Complexity

I Type Systems induced by “mainstream” logics are simply
too powerful to be easily turned into ICC systems.

I How should we proceed to, e.g. isolate a class of λ-terms
computing polytime functions?

I Type Systems [Hofmann1997, BNS2000, Hofmann1999].
I Start from something similar to T.
I Then, impose some constraints on recursion, akin to those

from [BellantoniCook1993].
I Linearity Constraints [Girard1997, Lafont2004].

I Key observation: copying is the operation making
evaluation of λ-expressions problematic from a complexity
point of view.

I Let us define some constraints on duplication, then!
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Safe Recursion and Type Systems
I Could we easily turn safe recursion into a type system

guaranteeing polynomial time computability in, e.g.,
System T?

I Naive Idea: use two function spaces.
I The space �A→ B of safe functions
I The space �A→ B of normal functions.

And apply the same restrictions as in safe recursion, getting
SR

I Typing rules are those of T.
I Iteration can be typed as follows

�nat → (�A→ A)→ �A→ A

I Unfortunately, this does not work!

HOexp(0) = λx.S x;

HOexp(n+ 1) = λx.HOexp(n)(HOexp(n)(x)).

I Key Insight: higher-order variables, essentially, should be
very hard to copy.

I Well, at least those involved in recursive definitions.

Theorem
SLR precisely captures FP.

I The type of iteration becomes

�nat → (�A( A)→ �A→ A

where A( B is the type of affine
functions from A to B.
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Capturing More Algorithms
I Safe recursion is sound and complete for polynomially

computable functions.

I Completeness, however, only holds in a purely extensional
sense.

I Not all polynomial time algorithms can be captured.
I (Linear) safe recursion, as an example, rules out all nested

recursive definitions, and then many useful programs
I Example: InsertionSort.

I Key Insight: one should also enforce functions to be
non-size increasing:

`M : �A( A ` N : A
` rec(M,N) : �NAT → A ` succ : �NAT → NAT

⇓
`M : �( A( A ` N : A
` rec(M,N) : NAT ( A ` succ : �( NAT ( NAT

Theorem
The obtained system, called LFPL, is sound and complete for P.
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From Lambda Calculus to Soft Lambda Calculus
I Lambda calculus Λ:

M ::= x | λx.M |MM

with no structural constraints.

I Linear Lambda Calculus Λ!

M ::= x | λx.M | λ!x.M |MM | !M
where x appears linearly in the body of λx.M , and

(λx.M)N →M{N/x} (λ!x.M)!N →M{N/x}

I Soft Lambda Calculus ΛS

M ::= x | λx.M | λ!x.M |MM | !M
where additional constraints are needed for λ!x.M :

I x appears once in M , inside a single occurrence of !...
I ... or x appears more than once in M , outside !.
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From Lambda Calculus to Soft Lambda Calculus
I Λ =⇒ Λ! is a Refinement.

I Whenever a term can be copied, it must be marked as such,
with !.

I Λ can be embedded into Λ!

{x} = x

{λx.M} = λ!x.{M}
{MN} = {M}!{N}

I The embedding does not make use of λx.t.
I Λ! =⇒ ΛS is a Restriction.

I Whenever you copy, you lose the possibility of copying.
I Examples:

λ!x.yxx X
λ!x.y!x X

λ!x.y(!x)x  
I Some results:

I Polytime soundness;
I Polytime completeness.



Linear Logic

I The Curry-Howard Correspondence comes into play.
I Linear Logic can be seen as a way to decompose A→ B

into !A( B.
I ( is the an arrow operator.
I ⊗ is the a conjunction operator.
I ! is a new operator governed by the following rules:

!A(!A⊗!A λ!x.〈x, x〉
!A⊗!B(!(A⊗B) λ!x.λ!y.!〈x, y〉

!A(!!A λ!x.!!x

!A( A λ!x.x



Linear Logic

Subsystems...

!A⊗!B(!(A⊗B) !A(!!A !A( A !A(!A⊗!A

ELL YES NO NO YES
LLL NO NO NO YES
SLL YES NO !A( A⊗ . . .⊗A

...and their expressive power

ELL Elementary Functions
LLL Polytime Functions
SLL Polytime Functions
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Part III

Boosting the Expressive Power of ICC
Systems
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ICC: Intensional Expressive Power
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Safe Recursion [BC93]
Light Linear Logic [Girard97]

...



How Many Terms Could we Catch?

I Very Few, Actually!

I In BC one cannot capture any of the interesting algorithms
computing the sorting functions, like QuickSort,
MergeSort, InsertionSort.

I Idea:
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Bounded Linear Logic.
I It is a refinement on (intuitionistic) linear logic:

!

n

A( 1

!

1+n

A( A

!

n+m

A(!

n

A⊗!

m

A

!

nm

A(!

n

!

m

A

where n and m are natural numbers.
I More generally, n ad m could be polynomials (on possibly

many variables) and not just natural numbers.
I Moreover, ! can act as a binder for resource variables:

!x<pA. As an example, the following is an axiom:

!x<p+qA(!x<pA⊗!y<qA[x← y + p]

I Intuitively:

!x<pA ∼ A[x← 0]⊗A[x← 1]⊗ . . .⊗A[x← p− 1].
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Quantified Bounded Affine Logic.
I Usual, second order quantification is available in QBAL.

I It was available in BLL, too.
I There is another form of quantification in QBAL: universal

and existential quantification on resource variables:

∃(x) : C.A
∀(x) : C.A

where C is a set of constraints.
I Example:

∃(x, y) : {x ≤ z2, y ≤ x}.!xy2A
Notice that the constraints in {x ≤ z2, y ≤ x} enforce a
polynomial upper bound on both x and y: x ≤ z2 and
y ≤ x ≤ z2.

I Not by coincidence! This is a constraint.
I Sequents have the form Γ `C A.
I Rules for first-order quantifier are standard.
I The rules coming from BLL leaves C unchanged.



Rules: Some Examples
I Axiom:

A vC B
A `C B

A

I Linear arrow:
Γ `C A ∆, B `C C
Γ,∆, A( B `C C

L(
Γ, A `C B

Γ `C A( B
R(

I Promotion:
A1, . . . , An `C B D, x < p |= C x /∈ FV (D) p vD qi

!x<q1A1, . . . , !x<qnAn `D!x<pB
P!

I Existential quantification:

Γ `C A{p/x} C |= D{p/x}
Γ `C ∃x : D.A R∃x

Γ, A `C∪D C x 6∈ FV (Γ) ∪ FV (C) ∪ FV (C)
Γ,∃x : D : A `C C L∃x
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Programming in QBAL...

I ...is not so different from programming in intuitionistic
second-order logic.

I For example, the type of natural numbers has the same
structure:

Np = ∀α.!x<p(α(x)( α(x+ 1))( α(0)( α(p)

It is, however, parametrized on a polynomial p.
I Similarly for any word algebra W .
I These types support the usual impredicative iteration

schema.
I The added value provided by first-order quantification will

show up in the embeddings.



How Intentionally Expressive QBAL is?

Just look at which ICC systems
can be embeddded into it. . .

. . . (compositionally).
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Embedding LFPL.
I LFPL is a linear functional language [Hofmann1999].

I All functions are non-size-increasing by construction.
I Linear higher-order primitive recursion.
I Nested recursion allowed.
I Types: A,B ::= � | Nat | A⊗B | A( B.

I The embedding:

〈�〉qp = ∃ε : {1 ≤ p}.1
〈Nat〉qp = Np

〈A⊗B〉qp = ∃(x, y) : {x+ y ≤ p}.〈A〉qx ⊗ 〈B〉qy
〈A( B〉qp = ∀(x) : {x+ p ≤ q}.〈A〉qx( 〈B〉qx+p

and

x : A1, . . . , x : An `M : B
⇓

〈A1〉
∑n

i=1 xi
x1 , . . . , 〈An〉

∑n
i=1 xi

xn `∅ 〈B〉
∑n

i=1 xi∑n
i=1 xi
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Embedding BC.
I BC is a characterization of the polytime functions

introduced in the nineties [BC93].
I A subalgebra of the primitive recursion functions.
I Every function f : Bn → B has m normal arguments and
n−m safe arguments.

I In a recursive definition, the recursive call must go through
a safe argument, while the argument driving the recursion
must be normal.

I The embedding:

f : B× . . .× B→ B ∈ BC
⇓

Wx1 , . . . ,Wxn `xm+1≤y,...,xn≤y Wp(x1,...,xm)+y

I This is an induction on the structure of the proof that f is
a BC function..

I Interestingly, the embedding is very similar to the proof of
soundness for BC.

I This cannot be done in ordinary BLL.
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What about Light Logics?
I Here the situation is different.

!A( 1
!A( A

!A(!A⊗!A
!A(!!A

I It is impossible to embed any light logic (except SLL) into
QBAL.

I Actually, ELL can be embedded into (Q)BAL.

!A
⇓

!x<0A

I But the embedding is not sensible from a dynamical point
of view!
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QBAL: Summing Up

I Moral: (a natural extension of) BLL is an interesting ICC
system with strong intensional expressive power:

QBAL

BLL BC LFPL

SLL

I Price to pay: the system is not implicit!
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Intensional Completeness?

I Extensional Completeness
I The set of all functions computed by programs in S equals

the complexity class P
I S, seen as a language, can have a very low complexity, even

polynomial time in some cases.
I S can be a tiny subset of LS , thus practically useless for

complexity analysis.
I Many examples: function algebras, light logics, etc.

I Intensional Completeness
I The set LP of all efficient programs equals S.
I S, seen as a language, cannot be recursively enumerable.
I Added value: a bound on the complexity of P ∈ S can often

be read off from the proof of P being an element of S.
I Few examples: d`PCF.
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Part IV

Challenges: Cryptography and
Concurrency



Proofs by Reduction

Property(Φ)
def
= (∀D.PPT (D)⇒ Pr(Success(D | Φ)) = negl(n)) .

Assumption(Φ) ⇒ Security(Π)

Examples
OneWay(f) ⇒ PRG(G)
PRG(G) ⇒ IND(Π)
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An Alternative Viewpoint

1. Introduce a λ-calculus RSLR, and prove it complete for
probabilistic polynomial-time computation
[Zhang10,DLPT11].

I RSLR is nothing more than a randomized variation on
Hofmann’s SLR obtained by endowing the latter with a
primitive flip.

2. Define a notion of equivalence close enough to
computational indistinguishability.

I Two distribution ensembles {Dn} and {En} are
computational indistinguishable when no PPT algorithm
can distinguish between them with more than a negligible
probability of success.

3. Prove an appropriate context lemma in the form of
full-abstraction for trace equivalence.
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computational indistinguishable when no PPT algorithm
can distinguish between them with more than a negligible
probability of success.

3. Prove an appropriate context lemma in the form of
full-abstraction for trace equivalence.



Cryptographic Reductions, More Formally
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6≈=⇒

I From the fact that M 6≡ N . . .
I . . . one derives the existence of a context D separating M

and N . . .
I . . . from which, thanks to full abstraction, one derives the

existence of a trace T which separates M and N . . .
I . . . from which one builds a trace S separating L and P .
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Probabilistic ICC: Challenges

I Besides applications to cryptographic proofs, there is also
the question of better understanding probabilistic
complexity classes like ZPP or BPP.

I There is however an inherent difficulty in pursuing this
goal!

I Classes like ZPP or BPP, as opposed to P, NP, PSPACE,
etc. which are syntactic, are semantic: there is no easy way
to enumerate even the machines which define the class.

I This is due to the fact that “BPP-machines” are required to
produce the correct output only with a certain probability,
and checking so is not trivial.

I But how about characterizing (interesting) subclasses of
them? This is an excellent research topic!



Probabilistic ICC: Challenges

I Besides applications to cryptographic proofs, there is also
the question of better understanding probabilistic
complexity classes like ZPP or BPP.

I There is however an inherent difficulty in pursuing this
goal!

I Classes like ZPP or BPP, as opposed to P, NP, PSPACE,
etc. which are syntactic, are semantic: there is no easy way
to enumerate even the machines which define the class.

I This is due to the fact that “BPP-machines” are required to
produce the correct output only with a certain probability,
and checking so is not trivial.

I But how about characterizing (interesting) subclasses of
them? This is an excellent research topic!



ICC and Concurrency?

I The computational models we have considered so far are
sequential. How about concurrent models of computation?

I The prototypical example of such a model of computation
is Milner’s π-calculus, in which so-called processes take the
place of terms.

I A π-calculus process can be seen as modeling a systems of n
threads T1, . . . , Tn which run in parallel.

I The threads can interact by exchanging messages through
channels, which themselves can contain addresses of other
channels.

I Exactly as for programs/terms/algorithms, we would like
processes to be efficient.

I But what does it mean?
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Higher-Order π-Calculus

I Processes:

V ::= ? | λx.P
P ::= 0 | x | P || P | a〈x〉.P | a〈V 〉.P | (νa)P | V V

I Reduction:

a〈V 〉.P || a〈x〉.Q→P P || Q[x/V ] (λx.P )V →P P [x/V ]

P →P Q

P || R→P Q || R
P →P Q

(νa)P →P (νa)Q

P ≡ Q Q→P R R ≡ S
P →P S



Higher-Order π-Calculus

I Nontermination:

V = λy.a〈x〉.(x ? || a〈x〉)
Q = V ? || a〈V 〉

Indeed:
Q→ Q→ . . .

I More interesting example:

V = λz.a〈x〉.(b〈y〉.c〈y〉.x ? || a〈x〉)
Q = V ? || a〈V 〉



Linear Higher-Order π-Calculus: LHOπ
I Generalizing Λ =⇒ Λ! to processes.
I Values and Processes:

V ::= ? | x | λx.P | λ!x.P | !V
P ::= 0 | P || P | a〈x〉.P | a〈!x〉.P | a〈V 〉.P | (νa)P | V V

where

λx.P
a(x).P

x occurs once in P
at level 0

I Examples:

a〈x〉.x? X
a〈!x〉.(x ? || !x?) X
a〈!x〉.a〈x〉.b〈x〉.0 X

a〈!x〉.(b〈y〉.c〈y〉.x ? || a〈!x〉.0) X
a〈x〉.(!x)?  



Linear Higher-Order π-Calculus : LHOπ

I Reduction:

a〈V 〉.P || a〈x〉.Q→L P || Q[x/V ]

a〈!V 〉.P || a〈!x〉.Q→L P || Q[x/V ]

(λx.P )V →L P [x/V ] (λ!x.P )!V →L P [x/V ]

P →L Q

P || R→L Q || R
P →L Q

(νa)P →L (νa)Q

P ≡ Q Q→L R R ≡ S
P →L S



Embedding LHOπ Into HOπ

[?]V = ?

[λx.P ]V = λ!x.[P ]P

[0]P = 0
[x]P = x

[P || Q]P = [P ]P || [Q]P

[a〈x〉.P ]P = a〈!x〉.[P ]P

[a〈V 〉.P ]P = a〈![V ]V〉.[P ]P

[(νa)P ]P = (νa)[P ]P

[V V ]P = [V ]V![V ]V

Proposition (Simulation)
If P →P Q, then [P ]P →L [Q]P



Soft Processes: SHOπ

I Generalizing Λ! =⇒ ΛS to processes.
I Linear processes with some additional constraints:

λx.P
a(x).P

x occurs once in P
at level 0

λ!x.P
a(!x).P

x occurs once in P

x occurs in P

at level 1

at level 0



Soft Processes: Examples

a〈x〉.x ? X

a〈!x〉.(x ? || (!x)?)  

a〈!x〉.a〈x〉.b〈x〉.0 X

a〈!x〉.(b〈y〉.c〈y〉.x || a〈!x〉)  
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Polytime Soundness
Theorem
There is a family of polynomials {pn}n such that for every
process P and for every m, if P →m

L Q, then
m, |Q| ≤ pB(P )(|P |).

I We can generalize polytime soundness by considering
labelled semantics

P
a〈R〉→ Q P

a〈R〉→ Q

Theorem
If P = P0

α1→ . . .
αn→ Pn and the input actions among α1, . . . , αn

are a1〈R1〉, . . . , am〈Rm〉, then

n, |Pi| ≤ pmax{B(P ),B(Ri)}(|P |+
m∑
i=1

|Ri|)
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Concurrent ICC: Challenges

I Does it make sense to measure time in terms of the number
of interleaving reduction steps?

I The answer is negative: one should rather count “how much
computation” stimuli from the environment (i.e., messages)
can possibly trigger.

I Linking events to the “complexity” triggered by them is
impossible in interleaving semantics, and one is then forced
to go towards true concurrency [DLHMV12].

I A recent contribution [DemangeonYoshida18] is the first
one seriously going in this direction.

I Another excellent research topic!
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Thank you!

Questions?
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